以局域共振思想为理论基础、亥姆霍兹共振器为结构单元,设计了一种可调谐的负体弹模量宽频带吸声超构材料。通过调节亥姆霍兹共振器开口孔径大小,调节超构材料的谐振频率。利用 COMSOL 多物理场仿真软件,模拟计算声学超构材料的透射谱;通过提取参数法,计算声学超构材料的体弹模量。计算结果表明:在谐振频率附近声学超构材料在实现负体弹模量的同时,还具有优良的吸声性能;将双层亥姆霍兹共振器周期性排列,构建了一种频率范围在970~1300 Hz 的宽频带吸声超构材料。在吸声频带内,声透过率最低达到-22 dB,吸声效果良好。采取将不同谐振频率亥姆霍兹谐振单元多层排列的方式构建超构材料,可以实现可听声频段任意带宽的负体弹模量和吸声。这种声学超构材料的提出能为宽频带负体弹模量吸声超构材料的设计提供一种全新的思路。
Based on the concept of local resonance,a kind of tunable broadband sound absorption meta-material consisting of helmholtz resonator (HR)with negative modulus was designed.The resonant frequency of the metamaterial can be tuned by changing the bore diameter drilled in the HR.The transmission curve of the metamaterial was simulated by using COMSOL Multiphysics,and then the modulus of the metamaterial can be obtained via extraction method.Simulation results confirm that the present metamaterial can accomplish negative modulus at the resonant frequency,simultaneously showing excellent property of sound absorption.A kind of metamaterial with broadband sound ab-sorption from 970 to 1 300 Hz was constructed by periodically arraying two layers of HRs.Excellent sound absorption appears in the sound absorption band with minimum transmission -22 dB.Metama-terial with any wanted bandwidth of negative modulus and sound absorption in audio-frequency range can be obtained by periodically arraying multilayers of HRs with different resonant frequencies.It is expected that the proposed metamaterial will significantly contribute to the design of broadband nega-tive modulus and sound absorption metamaterial.
参考文献
[1] | Shelby R A;Smith D R;Schultz S.Experimental verification of a negative index of refraction[J].SCIENCE,2001292(5514):77-79. |
[2] | Liu Z Y;Zhang X X;Mao Y W.Locally resonant sonic materials[J].SCIENCE,2000289:1734-1736. |
[3] | Hu X H;Ho K M.Homogenization of acoustic metamaterials of Helmholtz resonators in fluid[J].Physical Review B:Condensed Matter,200877:172301(1-1723014). |
[4] | Fang N;Xi D J;Xu J Y.Ultrasonic metamaterials with negative modulus[J].NATURE MATERIALS,2006(05):452-456. |
[5] | Bongard F;Lissek H;Mosig J R.Acoustic transmission line metamaterial with negative/zero/positive refractive in-dex[J].Physical Review B:Condensed Matter,201082:094306(1-0943011). |
[6] | Zhang S;Yin L L;Fang N.Focusing ultrasound with an acoustic metamaterial network[J].Physical Review Letters,2009102:194301(1-1943014). |
[7] | Li J;Fok L;Yin X.Experimental demonstration of an acousticmagnifying hyperlens[J].NATURE MATERIALS,2009(08):931-934. |
[8] | Mei J;Ma G;Yang M.Dark acoustic metamaterials as super absorbers for low-frequency sound[J].Nat Commun,2012(03):756-760. |
[9] | Popa B I;Zigoneanu L;Cummer S A.Experimental acoustic ground cloak in air[J].Physical Review Letters,2011106:253901(1-2539014). |
[10] | Stenger N;Wilhelm M;Wegener M.Experiments on Elast in Cloaking in Thin Plates[J].Physical Review Letters,2012108:014301. |
[11] | Zigoneanu L;Popa B;Cummer S A.Three-dimensional broadband omnidirectionalacoustic ground cloak Informati[J].NATURE MATERIALS,2014(13):352-355. |
[12] | Fokin V;Ambati M;Sun C.Method for retrieving effective properties of locally resonant acoustic metama-terials[J].Physical Review B:Condensed Matter,200776:144302(1-1443025). |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%