为了从复杂的路面环境中快速检测出路面裂缝并进行分类,提出一种多尺度矩阵滤波的路面裂缝检测方法。该方法基于 TI 公司 TMS642 DSP 平台,可以实现大量复杂数据的快速实时处理,通过多尺度滤波处理路面图像,有效进行图像预处理,消除噪声影响,突出路面裂缝特征。通过 Hessian 矩阵的特征值和特征方向提取裂缝特征,实现裂缝生长方向的跟踪,确定裂缝像素始末位置,从而确定裂缝大小,同时提出裂缝合并算法对小的不连续裂缝进行合并,最后根据裂缝曲率对裂缝进行快速分类。实验结果表明,该方法可以实现路面裂缝准确、快速的检测及分类,抗噪声能力强,图像分割精度高,漏检率和错检率很低,可以满足工程应用要求。
In order to quickly detect pavement cracks and classify them from complex pavement envi-ronment,a method based on multi-scale matrix filtering is proposed.The method which based on TMS642 DSP platform from TI can process a large number of complex data with high speed in real-time,and effectively process pavement images from multi scales to eliminate the noise,then highlights the characteristics of pavement cracks.Characteristics of pavement cracks can be extracted by analyzing the feature and feature direction of Hessian matrix,then growth direction can be traced and the size of it can be determined.At the same time,the small discontinuous cracks are combined through the crack combination algorithm.Finally,the cracks will be classified according to the crack curvature.Experimental results show that the method proposed in this paper can quickly detect and classify the pavement cracks with high accuracy,it also has strong anti-noise capacity,high image segmentation accuracy and low miss rate and error rate,so it can meet the engineering application re-quirements.
参考文献
[1] | 孙朝云;赵海伟;李伟;郝雪丽;呼延菊.基于双相扫描检测的路面三维裂缝识别方法[J].中国公路学报,2015(2):26-32. |
[2] | 唐磊;赵春霞;王鸿南;邵文泽.基于图像三维地形模型的路面裂缝自动检测[J].计算机工程,2008(5):20-21,38. |
[3] | 郝雪丽;孙朝云;沙爱民;李伟;呼延菊.水泥混凝土路面刻槽磨损程度三维检测方法[J].仪器仪表学报,2015(8):1767-1773. |
[4] | 田浩南;张叶.基于边缘及特征点匹配的立体图像质量评价[J].液晶与显示,2015(4):666-672. |
[5] | 乌旭;胡家升;梁殿亮.基于区域分割的指纹奇异性检测及中心点计算[J].光学精密工程,2006(2):229-235. |
[6] | 许燕;胡广书;商丽华;耿进朝.基于Hessian矩阵的冠状动脉中心线的跟踪算法[J].清华大学学报(自然科学版),2007(6):889-892. |
[7] | Automatic SAR Simulation Technique for Object Identification in Complex Urban Scenarios[J].IEEE journal of selected topics in applied earth observations and remote sensing,20143(3):994-1003. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%