欢迎登录材料期刊网

材料期刊网

高级检索

采用紧耦合气雾化制粉设备,研究了熔体过热度对紧耦合气雾化模式和粉末粒度的影响.实验中,保持其他气雾化工艺参数不变,熔体(金属铜)过热度分别设定为150,200,250和300 K,得到相应的粉末平均粒度分别为34.88,32.33,30.87和19.74 μm.对雾化过程的理论分析结果表明: 当熔体过热度从250 K提高到300 K时,液滴的破碎模式发生了改变,即由袋式转变为延展式,粉末粒度显著下降.但是,过热度的变化对雾化粉末粒度的正态分布规律没有明显影响;通过优化工艺参数,有潜力获取粒度更细、分布更均匀的粉末.

参考文献

[1] A.G.Dowson .Atomization dominates powder production[J].Metal Powder Report,1999(1):15-17.
[2] Schulz G.Some applications of ultrafine gas atomized metal powder beyond classical powder metallurgy[A].The Japan Party of Powder and Powder Metallurgy,2000:475.
[3] Miller S A.Close-coupled gas atomization of metal alloy[A].,1986:29.
[4] Mates S P;Settles G S.High-speed imaging of liquid atomization by two different close-coupled nozzles[A].Princeton NJ:MPIF,1996:67.
[5] Dunkley J .Water bench testing boots gas atomizing[J].MPR,1999,54(03):26.
[6] Jason Ting;Iver E. Anderson .A computational fluid dynamics (CFD) investigation of the wake closure phenomenon[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):264-276.
[7] Ting J.;Peretti MW.;Eisen WB. .The effect of wake-closure phenomenon on gas atomization performance[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1):110-121.
[8] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1988:99.
[9] 贝多 J K;胡云秀;曹勇家.雾化法生产金属粉末[M].北京:冶金工业出版社,1985
[10] Rao P .Shape and other properties of gas atomized metal powders[D].Philadephia:Drexel University,1973.
[11] Strauss J T;Miller S A.Effect of melt superheat on powder characteristics produced by close-coupled gas atomization[J].Advances in Powder Metallurgy & Particulate Materiams,1996:55.
[12] Ozbilen S;Unal A;Sheppard T .Influence of superheat on particle shape and size of gas atomized copper powders[J].Powder Metallurgy,1991,34(01):53.
[13] 吕海波;母育锋;李新军 等.熔体过热度对雾化过程的影响[J].中南工业大学学报(自然科学版),1997,28(02):149.
[14] 李清泉.紧密耦合气体雾化制粉原理[J].粉末冶金工业,1999(05):3-17.
[15] Mohamed S. El-Genk;Hamed H. Saber .Minimum thickness of a flowing down liquid film on a vertical surface[J].International Journal of Heat and Mass Transfer,2001(15):2809-2825.
[16] Senecal PK;Nouar I;Rutland CJ;Reitz RD;Corradini ML;Schmidt DP .Modeling high-speed viscous liquid sheet atomization[J].International Journal of Multiphase Flow,1999(6):1073-1097.
[17] Sheikhaliev Sheikhali M;Beryukhov Andrey V.Metal droplet's deformation and break-up by a gas stream[A].,2004
[18] Lee CH.;Reitz RD. .An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J].International Journal of Multiphase Flow,2000(2):229-244.
[19] Chou W H;Faeth G M .Temporal properties of secondary drop breakup in the bag breakup regime[J].International Journal of Multiphase Flow,1998,24:889.
[20] Faeth G;Hsiang L .Structure and breakup properties of sprays[J].International Journal of Multiphase Flow,1995,21:99.
[21] Matsumoto T;Fujii H;Ueda T et al.Measurement of surface tension of molten copper using the free-fall oscillating drop method[J].Measurement Science and Technology,2005,16:432.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%