欢迎登录材料期刊网

材料期刊网

高级检索

研究了7B04铝合金材料在不同热处理状态下的微观组织和性能.结果表明, 目前的单级固溶处理(470 ℃×80 min)并未使合金内一次析出相充分回溶,经物相分析确定残留相为MgZn2,S(Al2CuMg),T(Mg32(Al, Zn)49)及Al7Cu2Fe相等.T6状态下晶内析出相为细小GP区和η'相,晶界析出相为半连续状态,无明显的晶间无析出带(PFZ)存在,合金的抗拉强度达595 MPa,电导率为31.7%IACS;在T7(115 ℃×7 h+160 ℃×12 h)状态下,晶内的析出相为GP区、η'和η相,尺寸约为5~20 nm,晶界有不连续的较为粗大相析出,有明显的PFZ存在,此时抗拉强度为532 MPa,电导率为37.0%IACS;采用RRA处理可使合金获得较高强度和较高电导率,抗拉强度和电导率分别为575 MPa和36.3%IACS,此时晶内析出相为η'和η相,晶界析出物粗大呈完全不连续分布,有明显PFZ存在.

参考文献

[1] 宁爱林,曾苏民.时效制度对7B04铝合金组织和性能的影响[J].中国有色金属学报,2004(06):922-927.
[2] 王秋成 .航空铝合金残余应力消除及评估技术研究[D].浙江大学,2003.
[3] Heinz A;Haszler A;Keidel C;Moldenhauer S Benedictus R Miller W S .Recent development in aluminium alloys for aerospace applications[J].Materials Science and Engineering,2000,A280:102.
[4] Miller M P;Harley E J;Turner T J;Beaudoin A J Cassada W A .Mechanical behavior of thin sheets machined from AA7050-T7451 plate[J].Materials Science Forum,2000,331-337:1243.
[5] Deschamps A.;Brechet Y. .Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):200-207.
[6] 周鸿章 .铝合金预拉伸厚板[J].铝加工,1999,22(03):16.
[7] 李志辉,熊柏青,张永安,朱宝宏,刘红伟,王锋.单级时效对7B04预拉伸厚板组织和性能的影响[J].中国有色金属学报,2005(11):1670-1674.
[8] Liu C;Bi Y;Benedictus R.Modelling Al3Zr precipitation in an AA7050 alloy[A].Australia:Institute of Materials Engineering Australasia Ltd,2004:907.
[9] Warren A S.Developments and challenges for aluminum-A Boeing perspective[A].Australia:Institute of Materials Engineering Australasia Ltd,2004:24.
[10] 王涛,尹志民.高强变形铝合金的研究现状和发展趋势[J].稀有金属,2006(02):197-202.
[11] 张智慧,熊柏青,张永安,朱宝宏,刘红伟,王峰,石力开.喷射成形Al10.8Zn2.9Mg1.9Cu合金的显微组织演变规律研究[J].稀有金属,2005(05):599-603.
[12] 宋仁国.高强度铝合金的研究现状及发展趋势[J].材料导报,2000(01):20-21,34.
[13] Stiller K;Warren P J;Hansen V;Angenete J GjΘnnes J .Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100 and 150 ℃[J].Materials Science and Engineering,1999,A270:55.
[14] Li X Z;Hansen V;GjΘnnes J;Wallenberg L R .HREM study and structure modeling of the η'phase,the hardening precipitates in commercial Al-Zn-Mg alloys[J].Acta Materialia,1999,47(09):2651.
[15] Jiang X J;Noble B;Holme B;Waterloo G Tafto J .Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2000,31A:339.
[16] Mukhopadhyay A K;Reddy G M;Prasad K S;Varma V K,Mondal C.Microstructure property relationships in a high strength Al-Zn-Mg-Cu-Zr alloy[A].Australia:Institute of Materials Engineering Australasia Ltd,2004:883.
[17] Ferrer C P;Koul M G;Connolly B J;Moran A L .Improvements in strength and stress corrosion cracking properties in aluminum alloy 7075 via low-temperature retrogression and re-ageing heat treatments[J].Corrosion,2003,59(06):520.
[18] Tsai T C;Chuang T H .Role of grain size on the stress corrosion cracking of 7475 aluminum alloys[J].Materials Science and Engineering,1997,A225:135.
[19] Najjar D;Magnin T;Warner T J .Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy[J].Materials Science and Engineering,1997,A238:293.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%