欢迎登录材料期刊网

材料期刊网

高级检索

采用粉末冶金工艺制备了Fe-2.0Cr-2.0Mo-0.3C-35TiC钢结硬质合金.在1425~1455℃范围内研究了不同碳气氛对合金密度和抗弯强度的影响.不同碳气氛采用不同装舟方式来控制,即样品掩埋人TiC填料方式、样品曝露于Al_2O_3+4%C填料之上、样品与Al_2O_3+4%C之下铺一层碳黑并曝露方式.通过OM、SEM观察了合金的微观组织形貌;通过EDX手段分析了合金中各相的组成成分;测量了合金的密度和抗弯强度.结果表明,采用样品与Al_2O_3+4%C之下铺一层碳黑并曝露方式能够提供充足的碳气氛,改善液态Fe与TiC微粒的润湿性,1435℃下烧结1h所得的试样具有理想的致密度和抗弯强度,其密度达6.51 g·cm~(-3),抗弯强度达1659 MPa,比目前国内生产的相近成分的合金抗弯强度提高了约22%.

Fe-2.0Cr-2.0Mo-0.3C-35TiC steel-bonded titanium carbide was prepared by powder metallurgy.The influence of three different types of loading on the density and bending strength of the sintered alloy was studied at different sintering temperatures in the range of 1425-1455℃.The 1st type ofloading was that the alloy was entirely buried directly in the TiC filling,and the 2nd type of loading was that the alloy Was placed on top of the Al_2O_3+4%C filling,not buried but exposed,while the 3rd type Was that the alloy was placed on top of the Al_2O_3+4%C filling,whose bottom layer composed of carbon ponder with a thickness of a few nanometer.The micmstructure of the sintered alloy was observed by OM and SEM;the component of both phases was analyzed by EDX;the density and bending strengthWasmeasured.The results showed that the 3rd type of filling pattern provided the richest carbon atmosphere which could impmve the wettability between the liquid Fe and the TiC particles.and the alloy sintered for 1 h at 1435℃ obtained the highest density of 6.15g·cm~(-3) and the highest bending strength of 1655MPa,which was22% higher than the current bending-strength of do-mestic product of the similar composition.

参考文献

[1] 株洲硬质合金厂.钢结硬质合金[M].北京:冶金工业出版社,1982:172.
[2] 高建平,李炎,魏世忠,龙锐.钢结硬质合金的研究新进展[J].稀有金属与硬质合金,2006(04):55-58.
[3] 李沐山 .国外钢结硬质合金新进展[J].硬质合金,1994,11(02):105.
[4] Pgounis E;Lindroos VK .Processing and properties of particulate reinforced steel matrix composites materials[J].Science and Engineering,1998,A246(02):221.
[5] Rosskamp H;Ostgathe M .Sintered steels with inter hard phase produced by mechanical alloyirig in ball mill[J].Powder Metallurgy,1996,39(01):37.
[6] Ellis J L .Wear resistant alloy bonded carbides produced by PM[J].Powder Metallurgy International,1984,16(02):53.
[7] 尤显卿,王文芳.GJW35钢结硬质合金的组织与性能[J].模具工业,2003(03):54-57.
[8] 熊拥军,李溪滨,刘如铁,赵福安.锻造对TiC钢结硬质合金性能的影响[J].粉末冶金材料科学与工程,2005(03):177-181.
[9] 于福文,吴玉程,陈勇,邓景泉,陈俊凌.W-10%TiC复合材料的制备与力学性能研究[J].稀有金属,2008(02):151-155.
[10] Tzu-Piao TANG;Shih-Hsien CHANG .Microstructure and Mechanical Properties of 440C-TiC Composite Steels Produced through Powder Metallurgy Processing[J].ISIJ International,2008(10):1473-1477.
[11] Farid Akhtar,Shiju Guo,Jawid Askari,Jianjun Tian.Sintering behavior, microstructure and properties of TiC-FeCr hard alloy[J].北京科技大学学报(英文版),2007(01):89-93.
[12] 熊拥军,李溪滨,刘如铁,赵福安.高能球磨对新型TiC钢结硬质合金组织和性能影响的研究[J].粉末冶金技术,2006(03):187-191.
[13] 张二林,朱兆军,曾松岩.自生颗粒增强钛基复合材料的研究进展[J].稀有金属,1999(06):436-442.
[14] 甘可可,李溪滨.钢结硬质合金研究进展及现状[J].粉末冶金材料科学与工程,2002(03):214-220.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%