欢迎登录材料期刊网

材料期刊网

高级检索

以硝酸银、聚乙二醇、水合肼、EDTA为原料,采用水热法制备了3种新型钛基银电极(Ag/Ti-N_2H_4,Ag/Ti-PEG,Ag/Ti-PEG-EDTA).扫描电镜(SEM)和能谱分析(EDS)表明,银颗粒在基体钛表面形成了稳定的沉积层,3种电极的表面呈现不同的结构特征,Ag/Ti-N_2H_4电极上形成了直径1 μm银颗粒,Ag/Ti-PEG电极上形成了直径400~600 nm银球形颗粒,Ag/Ti-PEG-EDTA电极上的银金属球形颗粒粒径最小,约为200-300nm,并且分布均匀、相互连接形成空间网状结构.在1 mol·L~(-1)NaOH溶液中,利用循环伏安法研究了这3种电极对肼氧化的电催化活性.结果表明,3种电极对肼都具有催化氧化作用,与多晶银电极相比(-0.35 V),肼在这3种电极上的电化学氧化起始电位更低,Ag/Ti-PEG-EDTA和Ag/Ti-N_2H_4电极为-0.6V,Ag/Ti-PEG电极为-0.7 V.在加入的肼为20 mmol·L~(-1),在电位为-0.36 V处,多晶银、Ag/Ti-N_2H_4,Ag/Ti-PEG和Ag/Ti-PEG-EDTA电极对肼氧化的阳极电流密度分别为2.5,33,42和51 mA·cm~(-2).相比而言,Ag/Ti-PEG-EDTA和Ag/Ti-PEG电极对肼氧化的电活性最为优异,有望作为水合肼燃料电池的阳极材料.

Three novel titanium-supported silver electrodes(Ag/Ti-N_2H_4,Af/Ti-PEG,Af/Ti-PEG-EDTA)were fabricated by a hydrothermal process using AgNO_3,PEG,hydrazine,and EDTA as reaction materials.SEM and EDS images showed that a stable silver particle layer formed on the surface of titanium,the surface of three electrodes had different structural features.Ag/Ti-N_2H_4 electrode formed a 1 μm silver spherical particle layer,Ag/Ti-PEG formed a 400~600 nm silver spherical particle layer,and Ag/Ti-PEG-EDTA electrode formed a 200~300 nm silver spherical particle layer with a three-dimensional network structure.Oxidation of hydrazine on the electrodes in 1mol·L_(-1) NaOH solution was studied with cyclic voltammograms (CV).The results showed that the three kinds of electrodes all had electro-catalytic activity for hydrazine oxidation.The onset potentials of hydrazine oxidation on Ag/Ti-PEG-EDTA,Ag/Ti-N_2 H_4 and Ag/Ti-PEG were-0.6,-0.6 and-0.7 V,respectively,all were less than that on the polyerystalline silver lectrode(-0.35V).At -0.36 V ,the oxidation peak currentdensities of hydrazine in 1.0 mol·L_(-1)NaOH + 20 nnik·L_(-1)N_2H_4 solution on the polycrystalline silver,Ag/Ti-PEG-EDTA and Ag/Ti-PEG electrodes had significantly higher electro-activity for the hydra-zine oxidation.these novel electrodes would be the promising anodic materials which could be used in direct hydrazine fuel cells.

参考文献

[1] Altman MS.;He ZQ.;Poon HC.;Tong SY.;Chung WF. .Quantum size effect in low energy electron diffraction of thin films[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2001(0):82-87.
[2] Young TF.;Wu CC.;Fu GH.;Chen CS.;Liu JF. .STUDY OF AG THIN FILMS DEPOSITED ON POROUS SILICON[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,1996(0):57-60.
[3] Akamatsu K.;Mizuhata M.;Kajinami A.;Deki S.;Takeoka S. Fujii M.;Hayashi S.;Yamamoto K.;Takei S. .Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2000(1):55-60.
[4] 高迎春,李茂国,王广凤,方宾.银纳米修饰电极的制备及其对灿烂甲酚蓝的催化研究[J].分析试验室,2004(12):78-81.
[5] Dao Jim Guo;Hu Lin Li .Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution[J].Carbon: An International Journal Sponsored by the American Carbon Society,2005(6):1259-12064.
[6] Marian Chatenet;Fabriee Micoud;Ivan Roche;Eric Chainet .Kinetics of sodium bomhydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte:Part I.BH4-electro-oxidation on Au and Ag catalysts[J].,2006,51(25):5459.
[7] Alvarez-Ruiz B;Gomez R;Orts J M;Feliu J M.Role of the metal and surface structure in the electro-oxidation of hydrazine in acidic media[J].Journal of the Electrochemical Society,2002(149):D35.
[8] Nishihara C;Raspini I A;Kondoh H;Shindo H Kaise M Nozoye H.Behavior of hydrazine and its effects on the adsorption of hydrogen at Pt(322)and Pt(111)electrodes in sulfuric acid solutions[J].Electroanalytical Chemistry,1992(338):299.
[9] Rosca V;Koper M T.Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions electrechim[J].Acta,2008(53):5199.
[10] Korinek K;Korita J;Nusiloua M.A novel titanium-supported Ag/Ti electrode for the electro-oxidation of hydrazine[J].Journal of Electroanalytical Chemistry,1969(21):421.
[11] Gao GY;Guo DJ;Wang C;Li HL .Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J].Electrochemistry communications,2007(7):1582-1586.
[12] Guang-Wu Yang;Guo-Yu Gao;Ce Wang .Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation[J].Carbon: An International Journal Sponsored by the American Carbon Society,2008(5):747-752.
[13] Golabi S M;Noor-Mohammadi F.Electrocatalytic oxidation of hydrazine at cobalt hexacyanoferrate-modified glassy carbon,Pt and Au electrodes[J].Journal of Solid State Electrochemistry,1998(02):30.
[14] Felischmann M;Korinek K;Plrteher D.Oxidation of hydrazine at a nickel anode in alkaline solution[J].Journal of Electroanalytical Chemistry,1972(34):499.
[15] Eissner U;Gileadi E.Thermodynamics and kinetics of upd of lead on polyerystalline silver and gold[J].Journal of Electroanalytical Chemistry,1970(28):81.
[16] Droog J M M;Alderiiesten P T;Bootsma G A.Initial stages of anedic oxidation of silver in sodium hydrohide solution studied by potential sweep voltammetry and ellipsometry[J].Journal of Electroanalytical Chemistry,1979(99):173.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%