欢迎登录材料期刊网

材料期刊网

高级检索

采用热模拟压缩试验研究了粉末冶金TiAl合金在温度1000~1150℃、应变速率0.001~1s~(-1)范围内的高温变形特性,发现合金的流动应力-应变曲线具有应力峰和流变软化特性.为了研究TiAl合金在有限应变下的变形行为,基于动态材料模型(DMM)建立起了TiAl合金加工图.试验结果表明,在高应变速率(>0.1s~(-1))变形时,材料落人流动失稳区域,出现表面开裂.这对材料的变形是有害的,要避免在流动失稳区进行热加工处理.而在温度为1000~1050℃,应变速率为0.001~O.01s~(-1)时,功率耗散率η值在35%~50%之间.这个区域对应的变形机制为动态再结晶,适合进行热加工.在高温(≥1100℃),低应变速率(0.001s~(-1))变形时,功率耗散率η达到最大值60%,此时材料发生超塑性变形.

The hot deformation characteristics of PM TiAl alloy were studied in the temperature range of 1000 ~ 1150 ℃ and strain rate range of O. 001 ~ 1s~(-1) using hot compression test. The stress-strain curves exhibited an obvious peak followed by a broad flow sof-tening. In order to investigate the deformation behavior of PM TiAl alloy at a finite strain level, processing maps were constructed on the basis of a dynamic material modeling(DMM). The results showed that the alloy fall into flow instability region due to cracking at higher strain rate (> 0.1s~(-1)). Thermo mechanical processing in this region should be avoided beeanse this was harmful to deforma-tion of the alloy. Power dissipation efficiency ηranged from 35% to 50% in the temperature range of 1000 ~ 1050 ℃ and strain rate range of 0.001~0.01s~(-1). The deformation mechanism of this region was dynamic recrystallization and this region was suitable for thermo mechanical processing. When deformed at higher temperature (≥1100℃ ) and lower strain rate (0.001s~(-1)), power dissipa-tion efficiency ηreached a peak value of 60%. Superplastic deformation occurred in this region.

参考文献

[1] 李雷,曹睿,张继,陈剑虹,张君峰.不同应变速率下TiAl基合金压缩断裂行为的研究[J].稀有金属,2008(04):409-414.
[2] M. Thomas;J.L. Raviart;F. Popoff .Cast and PM processing development in gamma aluminides[J].Intermetallics,2005(9):944-951.
[3] Hsiung L M;Nieh T G .Microstructures and properties of powder metallurgy TiAl alloys[J].Materials Science and Engineering,2004,A364:1.
[4] 赵丽明,曲选辉,何新波,李世琼.粉末注射成形钛铝烧结工艺研究[J].稀有金属,2008(02):180-184.
[5] Y. V. R. K. Prasad;T. Seshacharyulu .Modelling of hot deformation for microstructural control[J].International Materials Reviews,1998(6):243-258.
[6] Raj R .Stress rupture[J].Metallurgical Transactions,1981,12A(07):1291.
[7] Prasad Y V R K .Recent advances in the science of mechanical processing[J].India J Technol,1990,28(6-8):435.
[8] Ravichandran N;Prasad Y V R K .Dynamic recrystallization during hot deformation of aluminum.A study using processing maps[J].Metallurgical and Materials Transactions,1991,22A(10):2339.
[9] Padmavardhani D;Prasad Y V R K .Characterization of hot deformation behavior of brasses using processing maps:part I.α brass[J].Metallurgical and Materials Transactions,1991,22A(12):2985.
[10] Mannan S L;Prasad Y V R K;Venugopal S .Optimization of hot workability in stainless steel-type AISI-304L using processing maps[J].Metallurgical and Materials Transactions,1992,23A(11):3093.
[11] 张军良,张小明,袁晓波,周军,郑欣,李中奎.新型高电阻率镍基合金加工工艺研究[J].稀有金属,2006(z2):144-147.
[12] 曾卫东,周义刚,舒滢,赵永庆,杨锦,张学敏.基于加工图的Ti-40阻燃钛合金热变形机理研究[J].稀有金属材料与工程,2007(01):1-6.
[13] Kim J H;Chang Y W;Chong S L;Ha T K .High-temperature deformation behavior of a gamma TiAl alloy-microatructural evolution and mechanisms[J].Metallurgical and Materials Transactions,2003,34A:2165.
[14] Prasad Y V R K;Gegel H L;Doraivelu S M;Malas J C Morgan J T Lark K A Barker D R .Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J].Metallurgical and Materials Transactions,1984,15A(10):1883.
[15] Semiatin S L;Seetharaman V;Weiss I .Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha micrcstructure[J].Materials Science and Engineering,1999,A263(02):257.
[16] Hofmann U;Blum W .A simple model of deformation of Ti48Al-2Cr-2Nb at high temperatures[J].Scripta Metallurgica et Materialia,1995,32:371.
[17] Panova J;Farkas D;Kim Y W;Wagner R,Yamaguchi M.Gamma Titanium Aluminides[M].TMS; Warrendale,PA,1995:331.
[18] 何景素;王燕文.金属的超塑性[M].北京:科学出版社,1986:26.
[19] Aabby M F;Verrall R A .Diffusion-accommdated flow and superplasticity[J].Acta Materialia,1973,21(02):149.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%