欢迎登录材料期刊网

材料期刊网

高级检索

Ti25V15Cr0.3Si合金含有40%左右的合金元素.是一种高固溶强化的β钛合金.测试了Ti25V15Cr0.3Si合金在室温(25℃)至600℃下的裂纹扩展性能,发现随着温度升高,裂纹扩展速率增大.与Ti6Al4V和β21S合金相比,室温下Ti25V15Cr0.3Si合金的裂纹扩展速率高于Ti6Al4V而低于β21S合金.600℃高温下,Ti25V15Cr0.3Si合金的裂纹扩展速率与β21S在650℃时的水平相当.研究结果表明,合金的屈服强度、弹性模量、断裂韧性、氧化性能和组织结构特征综合影响着Ti25V15Cr0.3Si合金的裂纹扩展损伤行为.从室温到300℃,随温度的升高,Ti25V15Cr0.3Si合金的屈服强度和弹性模量降低同时断裂韧性升高,因此裂纹扩展速率变化不明显;而从500-600℃,温度升高氧化加剧,合金疲劳裂纹扩展速率明显增加.与Ti6Al4V合金相比,室温下,Ti25V15Cr0.3Si合金相对于Ti6Al4V合金具有较低的弹性模量以及等轴的β组织,裂纹扩展速率较高.而与β21S合金相比,Ti25V15Cr0.3Si合金的屈服强度和弹性模量高于β21S合金,因此裂纹扩展速率较低.600℃高温下,Ti25V15Cr0.3Si合金的氧化程度明显高于β21S合金.高温下材料的氧化使得Ti25V15Cr0.3Si合金的裂纹扩展速率只与β21S在650℃时的水平相当.

参考文献

[1] Zhao Yongqing;Zhu Kangying;Qu Henglei;Wu Huan Liu Cai-li Li Yuelu .Microswcturoe of a bum resistant highly stabi-lized βtitanium alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,A282:153.
[2] Zhao Yongqing;Wu Huan;Liu Caili;Li Yuelu .The second phase in Ti40 burn resistant alloy[J].Journal of Materials Science,2003,38:1579.
[3] Zhao Yongqing;Zhou Lian;Zhu Kangying;Qu Hemglei.Mechanism of burn resistant titanium alloy Ti-40[J].Advanced Materials and Technology,2000:46.
[4] Zhao Y Q;Zhou L;Deng J .The role of interlace in the burning of titanium alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1999,267:167.
[5] Zhao Y Q;Zhou L;Deng J;Zhu K Y,Qu H L .Effects of allo-ying elemental Cr on the buying behavior of Ti-Cr alloys[J].Journal of Alloys Compounds,1999,284(04):190.
[6] 吴欢,赵永庆,曲恒磊,朱康英,刘彩利.两种Ti-V-Cr系阻燃钛合金在450℃~650℃下的高温氧化行为[J].稀有金属材料与工程,2003(01):45-49.
[7] Xin Shewei;Zhao Yongqing;Zeng Weidong;Wu Huan .Re-search on thermal stability of Ti40 alloy at 550℃[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,477:372.
[8] Minmin Wang;Yongqing Zhao;Lian Zhou .Study on creep behavior of Ti-V-Cr burn resistant alloys[J].Materials Letters,2004(26):3248-3252.
[9] 辛社伟,赵永庆,曾卫东,吴欢.Ti40合金550 ℃热暴露组织和性能演化规律的分析与讨论[J].稀有金属材料与工程,2008(03):423-427.
[10] WU Huan,ZHAO Yongqing,ZENG Weidong,QIAN Li.Fatigue crack growth behaviors of a new burn-resistant highly-stabilized beta titanium alloy[J].稀有金属(英文版),2009(06):545-549.
[11] Wu Huan;Zhao Yongqing;Zeng Weidong .Effect of ettees ratio on fatigue crack growth of Ti40 alloy[J].Transactions of Nonferrous Metals Society of China,2007,17(A01):1.
[12] 李重河,朱明,王宁,鲁雄刚,程申涛.钛合金在飞机上的应用[J].稀有金属,2009(01):84-91.
[13] 付艳艳,宋月清,惠松骁,米绪军,叶文君,于洋.β钛合金的强韧化机制分析[J].稀有金属,2009(01):92-95.
[14] 吴欢 .Ti40新型阻燃钛合金疲劳裂纹扩展行为研究[D].西安:西北工业大学,2006.
[15] Shen W;Soboyejo W O;Soboyejo A B O .An invest igation fa-tigue and dwell-fatigue crack growth in Ti-6Al-2Sn-4Zr-2Mo-0.1 Si[J].Mechanics of Materials,2004,36(1-2):117.
[16] 陈传尧;高大兴.疲劳断裂基础[M].武汉:华中理工大学出版社,1991:7.
[17] Zheng L;Hirt M A .Fatigue crack propagation in steels[J].Engineering Fracture Mechanics,1983,18(05):965.
[18] Lou J .An investigation of the effects of temperature on fatigue crack growth in a cast lamellar Ti-45Nb-2Mn-2Nb-+0.8vol.% TiB2 alloy[J].Materials Science and Engineering,2001,A319-321:618.
[19] Rodney Boyer;Cerhard Wehch;Collings E W.Materials Prop-erties Handbook:Titanium Alloys[M].Materials Information Society.United States of America,USA,1994:483.
[20] Ghonem H;Wen Y;Zheng D .Effects of temperature and fre-quency on fatigue crack growth in Ti-β21s monolithic laminate[J].Materials Science and Engineering,1993,A161:45.
[21] S. Hardt;H. J. Maier;H. -J. Christ .High-temperature fatigue damage mechanisms in near-α titanium alloy IMI 834[J].International Journal of Fatigue,1999(8):779-789.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%