用高频感应熔炼法制备了Mm(NiCoAlMn)5储氢合金,采用模拟电池法测试了合金在238~323 K温度范围内的活化、放电容量和高倍率放电性能.结果表明:制备合金为典型AB5型储氢合金,303K温度条件下吸氢量达到1.38%(质量分数),氢化物生成焓为32.36 kJ ·mol-1H2.合金电极的活化性能、放电容量和高倍率性能受温度影响显著.室温预活化可有效改善电极的低温性能,经室温预活化后合金电极在238 K最大放电容量达到336 mAh·g -1,明显高于未经室温预活化的最大放电容量25 mAh·g-1.Mm(NiCoMn)5贮氢合金电极的高倍率性能随着温度的升高先升高后降低,273和303 K温度条件下合金保持高倍率性能良好,3C放电电流密度条件下容量保持率均高于80%;238 K温度条件下合金的大电流放电性能急剧降低,1C放电电流密度条件下容量保持率仅为10%; 273 K下合金电极的综合性能最佳,最大放电容量达到340 mAh·g-1,300 mA·g-1放电电流密度下的高倍率放电比率为86%.循环伏安法测试证实,在238~323 K范围内,电极的氧化峰峰值电流(Ip)与扫描速度的平方根(v1/2)之间均存在良好的线性关系,整个电极反应受氢原子扩散控制;随着温度的降低氢扩散系数急剧下降,从而导致该合金电极的低温高倍率放电性能变差.由Arrhenius公式计算出合金中的氢扩散活化能为10.56 kJ·mol -1.
参考文献
[1] | Pan H G;Ma J X;Wang C S;Chen C P,Wang Q D .Effect of Co content on the kinetic properties of the MlNi4.3-xCoxAl0.7 hydride electrodes[J].Electrochimica Acta,1999,44(22):3977. |
[2] | 李汉军,孙杰,何国荣,吴锋.MH-Ni电池用储氢合金的研究进展[J].材料导报,2002(03):17-19,29. |
[3] | Khaldi C;Mathlouthi H;Lamloumi J .A comparative study,of 1 M and 8 M KOH electrolyte concentrations,used in Ni-MH batteries[J].Journal of Alloys and Compounds,2009,469(1-2):464. |
[4] | Zhang W C;Han S M;Hao J S;Li Y Bai T Y Zhang J W .Study on kinetics and electrochemical properties of low-Co AB5-type alloys for high-power Ni/MH battery[J].Electrochimica Acta,2009,54(04):1383. |
[5] | Khaldi C;Boussami S;Rejeb B B;Mathlouthi H,Lanloumi J .Corrosion effect on the electrochemical properties of LaNi3.55 Mn0 4Al0 3 Co0 75 and LaNi3 55 Mn0 4 Al0 3 Fe0 75 negative electrodes used in Ni-MH batteries[J].Materials Science and Engineering B,2010,175(01):22. |
[6] | 朱军,王娜,杨文浩,苗广礼,刘漫博.稀土储氢合金性能影响因素分析[J].稀有金属,2011(05):770-775. |
[7] | 郜余军,马立群,杨猛,赵相玉,丁毅.球磨时间对MmNi3.9Co0.45Mn0.4Al0.25-CoB复合储氢合金电化学性能的影响[J].稀有金属,2011(01):33-37. |
[8] | 白珍辉,尉海军,蒋利军,朱磊,简旭宇.Nd元素部分取代对La0.8-xNdxMg0.2Ni3.3Co0.5(x=0~0.15)储氢合金结构和电化学性能影响[J].稀有金属,2010(04):546-551. |
[9] | Erbacher J K .An environmental aircraft battery (EAB)[J].Journal of Power Sources,1999,80(1-2):265. |
[10] | Nelson R F .Power requirements for batteries in hybrid electric vehicles[J].Journal of Power Sources,2000,91(01):2. |
[11] | Li Rong,Wu Jianmin,Zhou Shaoxiong,Qian Jiuhong.Effects of Cobalt Content and Preparation on Electrochemical Capacity of AB5-Type Hydrogen Storage Alloys at Different Temperature[J].稀土学报(英文版),2006(03):341-345. |
[12] | Heng Yang;Yungui Chen;Mingda Tao;Chaoling Wu;Jie Shao;Gang Deng .Low temperature electrochemical properties of LaNi_(4.6-x)Mn_(0.4)M_x (M = Fe or Co) and effect of oxide layer on EIS responses in metal hydride electrodes[J].Electrochimica Acta,2010(3):648-655. |
[13] | Yang H;Chen Y G;Tao M D;Wu C L Shao J Deng G .Effects of Mo additive on the structure and electrochemical properties of kow-temperature AB5 metal hydride alloys[J].Journal of Alloys and Compounds,2011,509(09):3995. |
[14] | Ye H;Xia B J;Wu W Q;Du K Zhang H .Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys[J].Journal of Power Sources,2002,111(01):145. |
[15] | 董桂霞;朱磊;蒋利军;吴伯荣,陈晖,简旭宇.RE(NiCoMnAl)5电极材料的低温电化学性能[A].中国太原,2005:218. |
[16] | Xiangyu Zhao;Liqun Ma;Yi Ding;Xiaodong Shen .Effect of particle size on the electrochemical properties of MmNi_(3.8)Co_(0.75)Mn_(0.4)Al_(0.2) hydrogen storage alloy[J].International journal of hydrogen energy,2009(8):3221-3233. |
[17] | Feng F;Northwood D O .Hydrogen diffusion in the anode of Ni/MH secondary batteries[J].Journal of Power Sources,2004,136(02):346. |
[18] | Raju M;Ananth M V;Vijayaraghavan L .Electrochemical properties of MmNi3.03Si0 85 Co0 60Mn0 31Al0 08 hydrogen storage alloys in alkaline electrolytes-A cyclic voltammetric study at different temperatures[J].Electrochimica Acta,2009,54(04):1368. |
[19] | Yuan X X;Xu N X .Determination of hydrogen diffusion coefficient in metal hydride electrode by cyclic voltammetry[J].Journal of Alloys and Compounds,2001,316(1-2):113. |
[20] | Chen J;Dou S X;Bradhurst D H;Liu H K .Studies on the diffusion coefficient of hydrogen through metal hydride electrodes[J].International Journal of Hydrogen Energy,1998,23(03):177. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%