欢迎登录材料期刊网

材料期刊网

高级检索

以Gd2O3-HfO2( GDH)固溶氧化物作为靶材,采用脉冲激光沉积技术(PLD)在Ge(100)衬底上制备了GDH高k栅介质外延薄膜,其外延生长方式为“cube-on-cube”,GDH薄膜与Ge(100)衬底的取向关系为(100)GDH∥(100)Ge和[110] GDH∥[110]Ge.通过反射式高能电子衍射(RHEED)技术研究了激光烧蚀能量和薄膜沉积温度对薄膜晶体结构的影响,分析了二者与薄膜的取向关系,激光烧蚀能量对薄膜取向影响更为显著.得到较优的GDH外延薄膜沉积工艺为:激光烧蚀能量为3 J·cm-2、薄膜的沉积温度为600℃.用磁控溅射制备了Au/Ti顶电极和Al背电极,其中圆形的Au/Ti电极通过掩膜方法获得,直径为50μm.采用Keithley 4200半导体测试仪对所制备Au/Ti/GDH/Ge/Al 堆栈结构的Ge-MOS原型电容器进行电学特性分析,测试条件为:I-E测试的电场强度0~6MV·cm-1,C-V测试的频率300 kHz~1 MHz,结果表明,厚度为5nm的GDH薄膜具备良好介电性能:k-28,EOT ~0.49 nm,适于22 nm及以下技术节点集成电路的应用.

参考文献

[1] Ogawaa A;Iwamoto K;Ota H;Morita Y,Ikeda M,Nabatame T,Toriumi A .0.6 nm-EOT high-k gate stacks with HfSiOx interfacial layer grown by solid-phase reaction between HfO2 and Si substrate[J].Microelectronic Engineering,2007,84(9-10):1861.
[2] Hyoungsub Kim;Paul C. Mclntyre;Krishna C. Saraswat .Effects of crystallization on the electrical properties of ultrathin HfO_(2) dielectrics grown by atomic layer deposition[J].Applied physics letters,2003(1):106-108.
[3] Shinichi Takagi;Toshifumi Irisawa;Tsutomu Tezuka;Toshinori Numata;Shu Nakaharai;Norio Hirashita;Yoshihiko Moriyama;Koji Usuda;Eiji Toyoda;Sanjeewa Dissanayake;Masato Shichijo;Ryosho Nakane;Satoshi Sugahara;Mitsuru Takenaka;Naoharu Sugiyama .Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance[J].IEEE Transactions on Electron Devices,2008(1):21-39.
[4] L. Lin;J. Robertson .Atomic mechanism of flat-band voltage shifts by La_(2)O_(3) and Al_(2)O_(3) in gate stacks[J].Applied Physics Letters,2009(1):012906-1--012906-3-0.
[5] John Robertson .Maximizing performance for higher K gate dielectrics[J].Journal of Applied Physics,2008(12):124111-1-124111-7-0.
[6] Jagadeesh Chandra S V;Jeong M R;Shim K H;Hong H B Lee S H Ahn K S Choi C J .Effective metal work function of Pt gate electrode in Ge metal oxide[J].Semiconductor Device J Electrochem Soc,2010,157(05):H546.
[7] Krishna Saraswat;Chi On Chui;Tejas Krishnamohan;Donghyun Kim;Ammar Nayfeh;Abhijit Pethe .High performance germanium MOSFETs[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2006(3):242-249.
[8] J X Wang;A Laha;A Fissel;D Schwendt;R Dargis;T Watahiki;R Shayduk;W Braun;T M Liu;H J Osten .Crystal structure and strain state of molecular beam epitaxial grown Gd_2O_3 on Si(111) substrates: a diffraction study[J].Semiconductor Science and Technology,2009(4):138-143.
[9] Ioannou-Sougleridis V;Constantoudis V;Alexe M;Scholz R;Vellianitis G;Dimoulas A .Effects on surface morphology of epitaxial Y2O3 layers on Si(001) after postgrowth annealing[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2004(1/2):303-309.
[10] YangZ K;Lee W C;Lee Y J;Chang P Huang M L Hong M Yu K L Tang M T Lin B H Hsu C H Kwo J .Structural and composif ional inves figafion of yttrium-doped HfO2 films epitaxially grown on Si (111)[J].Applied Physics Letters,2007,91(20):202909.
[11] Zhang X Q;Tu H L;Wei F;Wang L Du J .Cube-on-cube epitaxy of Gd2O3-doped HfO2 films on Si(001) substrates by pulse laser deposition[J].Journal of Crystal Growth,2009,312(01):41.
[12] Yuhua Xiong;Hailing Tu;Jun Du;Mei Ji;Xinqiang Zhang;Lei Wang .Band structure and electrical properties of Gd-doped HfO_(2) high k gate dielectric[J].Applied physics letters,2010(1):012901-1-012901-3.
[13] Yue S J;Wei F;Wang Y;Yang Z Du J .Gd2O3 High-k gate dielectrics deposited by magnetron sputtering[J].J Phys:Conf Ser,2009,152(01):012004.
[14] Gottlob H D B;Echtermeyer T;Schmidt M;Mollenhauer T,Efavi J K,Wahlbrink T,Lemme M C,Czernohorsky M,Bugiel E,Fissel A,Osten H J,Kurz H .0.86-nm CET gate stacks with epitaxial Gd2O3 high-k dielectrics and FUSI NiSi metal elecrodes[J].IEEE Electron Device Letters,2006,27(10):814.
[15] Goutam Kumar Dalapati;Yi Tong;Wei Yip Loh;Hoe Keat Mun;Byung Jin Cho .Impact of interfacial layer control using Gd_(2)O_(3) in HfO_(2) gate dielectric on GaAs[J].Applied physics letters,2007(18):183510-1-183510-3-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%