随着燃料电池、燃料电池汽车的快速发展,LiBH4被认为是最具应用前景的储氢材料之一.然而,LiBH4吸放氢温度高以及吸放氢速率相对缓慢限制了其广泛应用.为改善LiBH4吸放氢性能,在LiBH4中添加少量Al,采用基于密度泛函理论的第一原理赝势平面波方法,计算了LiBH4合金化前后体系的氢化物形成热、H原子解离能,体系的晶体与电子结构.氢化物形成热、H原子解离能计算结果发现:Al合金化后体系相结构稳定性变差,体系解氢过程中所吸收的热量减少,H原子解离能减小,体系解氢能力增强.电子态密度(DOS)、电子密度和Mulliken电子占据数的结果表明:LiBH4结构稳定、解氢困难的电子结构原因是B-H之间较强的共价键,Al对LiBH4体系解氢性能增强主要是Al-LiBH4体系Fermi能级附近能隙值发生变化以及Li-BH,B-H间成键作用减弱.理论上揭示Al添加改善LiBH4体系解氢性能的微观机制,为LiBH4实际应用提供理论指导.
参考文献
[1] | 马平平,刘志坚,夏建华,陈宇,胡朴,卢志超.喷雾干燥法合成锂离子电池复合正极材料xLiFePO4.yLi3V2(PO4)3及性能研究[J].稀有金属,2012(01):104-108. |
[2] | 方占召,康向东,王平.硼氢化锂储氢材料研究[J].化学进展,2009(10):2212-2218. |
[3] | 朱军,王娜,杨文浩,苗广礼,刘漫博.稀土储氢合金性能影响因素分析[J].稀有金属,2011(05):770-775. |
[4] | Shin-Ichi Orimo;Yuko Nakamori;Nobuko Ohba;Kazutoshi Miwa;Masakazu Aoki;Shin-ichi Towata;Andreas Zuttel .Experimental studies on intermediate compound of LiBH_(4)[J].Applied physics letters,2006(2):021920-1-021920-3-0. |
[5] | 夏广林,余学斌,吴铸.Al添加对LiBH4可逆吸放氢性能影响的研究[J].稀有金属材料与工程,2009(09):1618-1621. |
[6] | Adamo C.;Barone V. .Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models[J].The Journal of Chemical Physics,1998(2):664-675. |
[7] | Kazutoshi Miwa;Nobuko Ohba;Shin-ichi Towata;Yuko Nakamori;Shin-ichi Orimo .First-principles study on lithium borohydride LiBH_4[J].Physical review, B. Condensed matter and materials physics,2004(24):245120.1-245120.8. |
[8] | Segall MD.;Lindan PJD.;Probert MJ.;Pickard CJ.;Hasnip PJ.;Clark SJ. Payne MC. .First-principles simulation: ideas, illustrations and the CASTEP code[J].Journal of Physics. Condensed Matter,2002(11):2717-2744. |
[9] | Hans Hagemann;Moise Longhini;Jakub W. Kaminski .LiSc(BH4)4: A Novel Salt of Li~+ and Discrete Sc(BH4)_4~- Complex Anions[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2008(33):7551-7555. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%