欢迎登录材料期刊网

材料期刊网

高级检索

采用水热法在高压反应釜内的高温、高压超临界水热环境下,以去离子水为反应介质,使活性高且难溶于水的一氧化硅粉末(SiO)通过硅原子的重结晶成核生长出本征硅纳米线.通过温度控制仪控制高压反应釜内温度和压力的变化,探索制备硅纳米线的最佳水热条件.通过多次实验探索,得知水热法制备硅纳米线的最佳条件是温度大于等于450℃、压力在9~10 MPa.然后通过扫描电子显微镜(SEM)、能量色散X射线光谱仪(EDX)、高分辨透射电镜(HRTEM)观察SiNWs的形貌和结构,分析其组成成分.通过SEM可观察到硅纳米线表面光滑、最小直径达50 nm及长度为3~5 μm,由EDX图像可知SiNWs中只有硅和氧两种元素,而且Si∶O原子数比为3.5∶1.0.在HRTEM下可知硅纳米线是由芯部的晶体硅结构和外部无定形的二氧化硅包覆层组成,且包覆层小于5 nm.研究了本征SiNWs的拉曼光谱,发现拉曼主峰蓝移且在低频发生不对称宽化,分析认为是硅纳米线中存在的压应力和缺陷导致的.同时,在实验的基础上解释水热法制备SiNWs的机制,SiO在水热环境下歧化反应生成硅和二氧化硅,然后Si和SiO2开始堆叠生成SixO,即大量的纳米团簇,在一定温度下硅原子重结晶,同时在SixO的引导下沿一维方向生长.

参考文献

[1] Yu DP.;Bello I.;Sun XS.;Tang YH.;Zhou GW.;Bai ZG.;Zhang Z. Feng SQ.;Lee CS. .Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature[J].Solid State Communications,1998(6):403-407.
[2] 张亚利,郭玉国,孙典亭.纳米线研究进展(2):纳米线的表征与性能(续上期)[J].材料科学与工程,2001(02):89-94.
[3] X.B. Zeng;Y.Y. Xu;S.B. Zhang;Z.H. Hu;H.W. Diao;Y.Q. Wang;G.L. Kong;X.B. Liao .Silicon nanowires grown on a pre-annealed Si substrate[J].Journal of Crystal Growth,2003(1/2):13-16.
[4] Zhang YF.;Lam C.;Wang N.;Lee CS.;Bello I.;Lee ST.;Tang YH. .Bulk-quantity Si nanowires synthesized by SiO sublimation[J].Journal of Crystal Growth,2000(1/2):115-118.
[5] Kok-Keong Lew;Joan M. Redwing .Growth characteristics of silicon nanowires synthesized by vapor―liquid―solid growth in nanoporous alumina templates[J].Journal of Crystal Growth,2003(1/2):14-22.
[6] Gogotsi YG.;Nickel KG. .Formation of filamentous carbon from paraformaldehyde under high temperatures and pressures[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(7/8):937-942.
[7] Joseph Libera;Yury Gogotsi .Hydrothermal synthesis of graphite tubes using Ni catalyst[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(9):1307-1318.
[8] Tang YH;Pei LZ;Chen YW;Guo C .Self-assembled silicon nanotubes under supercritically hydrothermal conditions[J].Physical review letters,2005(11):6102-1-6102-4-0.
[9] N. Wang;Y. H. Tang;Y. F. Zhang;C. S. Lee;I. Bello;S. T. Lee .Si nanowires grown from silicon oxide[J].Chemical Physics Letters,1999(2):237-242.
[10] 黄秋玉,曾效舒,曾刚,周国华.碳纳米管对镁锌合金组织及性能的影响[J].稀有金属,2012(05):750-756.
[11] Menger FM.;Keiper JS. .Gemini surfactants [Review][J].Angewandte Chemie International Edition,2000(11):1907-1920.
[12] Demichel, O;Oehler, F;Calvo, V;Noe, P;Pauc, N;Gentile, P;Ferret, P;Baron, T;Magne, N .Photoluminescence of silicon nanowires obtained by epitaxial chemical vapor deposition[J].Physica, E. Low-dimensional systems & nanostructures,2009(6):963-965.
[13] Zhou XT.;Hu JQ.;Li CP.;Ma DDD.;Lee CS.;Lee ST. .Silicon nanowires as chemical sensors[J].Chemical Physics Letters,2003(1/2):220-224.
[14] R. Augke;W. Eberhardt;C. Single .Doped silicon single electron transistors with single island characteristics[J].Applied physics letters,2000(15):2065-2067.
[15] Yi Cui;Zhaohui Zhong;Deli Wang;Wayne U. Wang;Charles M. Lieber .High Performance Silicon Nanowire Field Effect Transistors[J].Nano letters,2003(2):149-152.
[16] N. J. Stone;H. Ahmed .Single-electron detector and counter[J].Applied physics letters,2000(5):744-746.
[17] T.Altebaeumer;H.Ahmed .Silicon nanowires and their application in bi-directional electron pumps[J].Microelectronic engineering,2001(0):1029-1033.
[18] Piscanec S.;Cantoro M.;Ferrari AC.;Zapien JA.;Lifshitz Y.;Lee ST. Hofmann S.;Robertson J. .Raman spectroscopy of silicon nanowires - art. no. 241312[J].Physical review, B. Condensed matter and materials physics,2003(24):1312-0.
[19] 肖清华,屠海令.Si/SiGe异质结构的硅盖层中应变对Raman谱特征的影响[J].光谱学与光谱分析,2005(05):719-722.
[20] S.T.Lee;Y.F.Zhang .Semiconductor nanowires from oxides[J].Journal of Materials Research,1999(12):4503-4507.
[21] S. T. Lee;N. Wang;Y. F. Zhang .Oxide-Assisted Semiconductor Nanowire Growth[J].MRS bulletin,1999(8):36-42.
[22] Y. H. Tang;L. Z. Pei;L. W. Lin;X. X. Li .Preparation of silicon nanowires by hydrothermal deposition on silicon substrates[J].Journal of Applied Physics,2009(4):044301-1-044301-5-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%