欢迎登录材料期刊网

材料期刊网

高级检索

过渡金属硼化物因其具有超硬特性而受到人们的关注,有望广泛应用于切屑加工工具、耐磨涂层、研磨材料等领域.介绍了制备过渡金属硼化物块体和薄膜材料的主要方法,并总结了部分过渡金属二元硼化物的结构和性能.不同过渡金属硼化物的结构不同,属于单斜、正交、六方等晶系;过渡金属硼化物薄膜材料的厚度在1μm以下;其硬度高于块体材料的硬度,达到超硬水平;但制得的过渡金属硼化物块体材料的硬度并不理想,与金刚石和立方氮化硼相比尚有一定的差距,还需进一步改进材料设计理念和探索新的制备方法.

参考文献

[1] J Haines;JM Léger;G Bocquillon .Synthesis and Design of Superhard Materials[J].Annual review of materials research,2001(0):1-23.
[2] Chien-Min Sung;Michael Sung .Carbon nitride and other speculative superhard materials[J].Materials Chemistry and Physics,1996(1):1-18.
[3] Richard B. Kaner;John J. Gilman;Sarah H.Tolbert .Designing Superhard Materials[J].Science,2005(5726):1268-1269.
[4] Vladimir L. Solozhenko;Oleksandr O. Kurakevych;Denis Andrault;Yann Le Godec;Mohamed Mezouar .Ultimate Metastable Solubility Of Boron In Diamond: Synthesis Of Superhard Diamondlike Bc_5[J].Physical review letters,2009(1):168-171.
[5] A.L. Ivanovskii .Mechanical and electronic properties of diborides of transition 3d-5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials[J].Progress in materials science,2012(1):184-228.
[6] A. R. Oganov;A. O. Lyakhov .Towards the Theory of Hardness of Materials[J].Journal of superhard materials: Sverkhtverdye materialy,2010(3):143-147.
[7] Simunek A .How to estimate hardness of crystals on a pocket calculator[J].Physical review, B. Condensed matter and materials physics,2007(17):2108-1-2108-4-0.
[8] A. R. Oganov;V. L. Solozhenko .Boron: a Hunt for Superhard Polymorphs[J].Journal of superhard materials: Sverkhtverdye materialy,2009(5):285-291.
[9] Veprek S.;Argon AS. .Towards the understanding of mechanical properties of super- and ultrahard nanocomposites [Review][J].Journal of Vacuum Science & Technology, B. Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena,2002(2):650-664.
[10] Zhou W;Wu H;Yildirim T .Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study[J].Physical review, B. Condensed matter and materials physics,2007(18):184113-1-184113-6-0.
[11] Hebbache M;Stuparevic L;Zivkovic D .A new superhard material: Osmium diboride OsB2[J].Solid State Communications,2006(5):227-231.
[12] Chung HY;Weinberger MB;Levine JB;Kavner A;Yang JM;Tolbert SH;Kaner RB .Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure.[J].Science,2007(5823):436-439.
[13] Edward G. Gillan;Richard B. Kaner .Synthesis of Refractory Ceramics via Rapid Metathesis Reactions between Solid-State Precursors[J].Chemistry of Materials,1996(2):333-343.
[14] Rao L.;Kaner RB.;Gillan EG. .RAPID SYNTHESIS OF TRANSITION-METAL BORIDES BY SOLID-STATE METATHESIS[J].Journal of Materials Research,1995(2):353-361.
[15] Robert W.Cumberland;Michelle B.Weinberger;John J.Gilman;Simon M.Clark;Sarah H.Tolbert .Osmium Diboride,An Ultra-Incompressible,Hard Material[J].Journal of the American Chemical Society,2005(20):7264-7265.
[16] J.V. Rau;A. Latini;A. Generosi .Deposition and characterization of superhard biphasic ruthenium boride films[J].Acta materialia,2009(3):673-681.
[17] J.V. Rau;A. Latini .New Hard and Superhard Materials: RhB_(1.1) and IrB_(1.35)[J].Chemistry of Materials: A Publication of the American Chemistry Society,2009(8):1407-1409.
[18] Alessandro Latini;Julietta V. Rau;Daniela Ferro .Superhard Rhenium Diboride Films: Preparation and Characterization[J].Chemistry of Materials: A Publication of the American Chemistry Society,2008(13):4507-4511.
[19] Alessandro Latini;Julietta V. Rail;Roberto Teghil .Superhard Properties of Rhodium and Iridium Boride Films[J].ACS applied materials & interfaces,2010(2):581-587.
[20] I. Martinez;J. Meseguer;J. M. Perales .Analytical modelling of floating zone crystal growth[J].Advances in Space Research: The Official Journal of the Committee on Space Research(COSPAR),2002(4):569-574.
[21] 李文良,罗远辉.区域熔炼法制备高纯锌的研究[J].稀有金属,2011(04):537-542.
[22] Takaya Akashi;Hiroaki Iwata;Takashi Goto .Preparation of BaTi_2O_5 Single Crystal by a Floating Zone Method[J].Materials transactions,2003(4):802-804.
[23] Jonathan B. Levine;Sandy L. Nguyen;Haider I. Rasool;Jeffrey A. Wright;Stuart E. Brown;Richard B. Kaner .Preparation and Properties of Metallic, Superhard Rhenium Diboride Crystals[J].Journal of the American Chemical Society,2008(50):16953-16958.
[24] Chen W;Anselmi-Tamburini U;Garay JE;Groza JR;Munir ZA .Fundamental investigations on the spark plasma sintering/synthesis process - I. Effect of dc pulsing on reactivity[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):132-138.
[25] Antonio Mario Locci;Roberta Licheri;Roberto Orru .Reactive Spark Plasma Sintering of rhenium diboride[J].CERAMICS INTERNATIONAL,2009(1):397-400.
[26] Locci AM;Orru R;Cao G .Simultaneous spark plasma synthesis and densification of TiC-TiB2 composites[J].Journal of the American Ceramic Society,2006(3):848-855.
[27] A. L. Ivanovskii .The Search for Novel Superhard and Incompressible Materials on the Basis of Higher Borides of s, p, d Metals[J].Journal of superhard materials: Sverkhtverdye materialy,2011(2):73-87.
[28] Hsiu-Ying Chung;Michelle B. Weinberger;Jenn-Ming Yang;Sarah H. Tolbert;Richard B. Kaner .Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB_(2), OsB_(2), and ReB_(2)[J].Applied physics letters,2008(26):261904-1-261904-3-0.
[29] Qinfen Gu;Guenter Krauss;Walter Steurer .Transition Metal Borides: Superhard versus Ultra-incompressible[J].Advanced Materials,2008(19):3620-3626.
[30] Mei Wang;Yinwei Li;Tian Cui;Yanming Ma;Guangtian Zou .Origin of hardness in WB_(4) and its implications for ReB_(4), TaB_(4), MoB_(4), TcB_(4), and OsB_(4)[J].Applied physics letters,2008(10):101905-1-101905-3-0.
[31] LIN Fei,WU Ke-Chen,HE Jian-Gang,SA Rong-Jian,LI Qiao-Hong,WEI Yong-Qin.Ultra-incompressible Ternary Diborides Re0.5Ir0.5B2,Re0.5Tc0.5B2, Os0.5W0.5B2 and Os0.5Ru0.5B2: Density Functional Calculation[J].结构化学,2011(05):622-629.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%