欢迎登录材料期刊网

材料期刊网

高级检索

以熔化-旋转法制备了Cu70Zr30和Cu100-xYx( x = 28, 67)非晶带试样并在1~300 K温度范围内测量了电阻和磁电阻随温度变化的规律.非晶Cu70Zr30电阻率ρ(T)的温度系数(TCR)在整个测量温区内都是负值,并且在两个不同的温区表现出-T1/2行为.对于类似的Cu100-xYx合金系统,在1~200 K温区内也做了同类测量.在低温1~4 K, 两个不同的无序系统CuZr和CuY的 TCR都准确地表现出-T1/2行为,这表明无序系统在极低温条件下的量子相干效应.这主要应归因于在粒子-空穴通道的电子-电子相互作用.而无序Cu70Zr30在宽广的中低温区60~300 K以更大斜率表现出的-T1/2行为,可以用初始定域化理论解释.无序CuZr和CuY的低温磁电阻ρ(B,T)测量结果与定域化理论进行了拟合和讨论.

Melt-spun ribbons of Cu70Zr30 and Cu100-xYx(x=28,67) have been prepared and measured the temperature dependence of the electrical resistance, ρ(T), in the range of 1~300 K. A negative temperature dependence of ρ(T) for Cu70Zr30 through the whole temperature range were found. -T1,2behaviors of the reduced resistivity are displayed in two ranges of temperature. One of the -T1,2dependence of the electrical resistivity in the range of 1~4 K may be mainly attributed to the electron-electron interaction in particle-hole channel, the other in the wide intermediate temperature range of 60~300 K can be accounted for by incipient localization. For the similar alloys of melt-spun Cu72Y28 and Cu33Y67 ρ(T) in the range of 1~200 K were measured as a contrast. The interaction at low temperature is also identified in these two systems. Their temperature coefficients of ρ(T) have a change sign that was analyzed. The positive magnetoresistances ρ(B,T) of disordered Cu70Zr30 and CuY at a few different temperatures up to 20 K in the fields below 1.8T were also measured. The weak-localization is dominant in the ρ(B,T) of these alloys. The fittings of the ρ(B,T) data to the localization theory are discussed. It could be noticed that all the physical quantities such as ρ, TCR, MR and χ are stronger for the Y-richer CuY alloys.

参考文献

[1] P Lindqvist;P Petrovic;Z-Y Liu;O Lapp .[J].Materials Science and Engineering,1998,99:235.
[2] T Kakeshita;T Fukuda;H Tetsukawa et al.[J].Applied Phys(Japan),1998,37(5A):2535.
[3] M Ahlskog;R Menon .[J].Physical Review B,1998,10:7171.
[4] P A Lee;T V Ramakrishnan .[J].Reviews of Modern Physics,1985,57:287.
[5] G Bergmann .[J].Physical Review B,1987,35:4205.
[6] N Karpe;M Ahlgren;N G Chechenin et al.[J].Physical Review B,1995,51:625.
[7] J H Mooij hys .[J].Status Solidi,1973,A 17:521.
[8] B L Altshuler;A G Aronov .[J].Solid State Communications,1983,46:429.
[9] B L Altshuler;A G Aronov;A L Efros;M Pollak.Electron-Electron Interaction in Disordered systems[M].North-Holland,1985:1.
[10] P W Anderson .[J].Physica C,1991,185:11.
[11] Mark Ya Azbel;L Kheifits .[J].Physical Review B,1994,50:4951.
[12] I Zambetaki .[J].Physical Review B,1997,56:12221.
[13] C C Tsuei .[J].Physical Review Letters,1986,57:1943.
[14] A Worrone;J E Schmidt.Proceedings of the Symposium on Interconnect and Metalization,Paris,France[M].Pennington,NJ,USA:Electrochem Soc,1998:84-95.
[15] Jiang Hongwei;Luo Guangwing;Mai Zhenhong;Lai Wuyan .[J].Chinese Science Bulletin,1998,43:1268.
[16] A Paja;G J Morgan .[J].Physica Status Solidi B,1998,206:701.
[17] P Lindqvist;A Nordstrom;O Rapp .[J].Physical Review Letters,1990,24:2941.
[18] O Rapp;Yanfei Li .[J].Physical Review B,1987,36:7883.
[19] 朱晓波,赵士平,于洪伟,任育峰,陈赓华,解思深,杨乾声.Bi2Sr2CaCu2O8+δAu界面性质的研究[J].低温物理学报,2003(04):247-250.
[20] 李燕飞,张光宇,桂太龙,王义杰,宋威.La0.7-xCexCa0.3MnO3低场磁电阻的晶格效应[J].低温物理学报,2004(02):126-130.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%