低温物理学报 , 2008, 30(3): 222-226. doi: 10.3969/j.issn.1000-3258.2008.03.008
超导-高分子复合材料介电性质的研究
宋桂林 1, , 房坤 2, , 常方高 3, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"与同成分的传统粗晶材料相比,纳米晶材料的腐蚀电化学行为发生显著改变.纳米化会影响材料表面形成钝化膜的各种性能,但关于纳米化如何影响决定其腐蚀行为的钝化膜生长机制以及点蚀行为目前尚不明确.本文综述了近期针对纳米晶材料在含Cl的常温水溶液中的钝化膜生长及点蚀行为2个动态历程的研究结果,发现纳米化通过促进钝化膜的形核过程并提高钝化膜的生长速度,从而改善了钝化膜的致密性.纳米化改变了点蚀的萌生位置,抑制了稳态点蚀的形成和生长过程,从而提高材料抗局部腐蚀的能力.","authors":[{"authorName":"刘莉","id":"4c477d38-a2c9-4f4e-aab9-bc7852b72d40","originalAuthorName":"刘莉"},{"authorName":"李瑛","id":"8560fb70-4059-4c20-a33d-d87d353a5628","originalAuthorName":"李瑛"},{"authorName":"王福会","id":"18e8e5c2-5c70-4ff6-a75f-70816ab91706","originalAuthorName":"王福会"}],"doi":"10.3724/SP.J.1037.2013.00617","fpage":"212","id":"e3e1b3ed-7e3e-41af-8c4b-b53c432be061","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"77789881-d420-4026-becd-9e12169bae75","keyword":"纳米晶金属材料","originalKeyword":"纳米晶金属材料"},{"id":"e9f44538-e5d8-43d5-acc6-988cccd982ba","keyword":"钝化","originalKeyword":"钝化"},{"id":"b286fc18-9d2c-45a8-8cbb-b151c1c22608","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"e71b9334-6753-4663-9e3e-044303f74a3a","keyword":"原位AFM观测","originalKeyword":"原位AFM观测"},{"id":"140f2913-0033-4317-9485-d97da8d6782f","keyword":"电化学腐蚀","originalKeyword":"电化学腐蚀"}],"language":"zh","publisherId":"jsxb201402011","title":"钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为","volume":"50","year":"2014"},{"abstractinfo":"材料的强化通常是在材料内部引入各种缺陷以阻碍位错运动来实现, 如固溶强化、弥散强化、细晶强化和应变强化等,但这些传统的强化途径无可避免地会影响材料的塑性形变能力, 导致塑性和韧性的降低. 利用纳米尺度孪晶界面实现材料强化可避免上述缺点. 本文对纳米孪晶强化原理和纳米孪晶金属研究进展进行了简要综述, 分别讨论了纳米孪晶变形机制、纳米孪晶金属的部分力学行为(如强度、塑性、应变速率敏感性和加工硬化等)和物理性能(如导电性), 以及纳米孪晶金属的制备技术等相关问题.","authors":[{"authorName":"卢磊卢柯","id":"b9ee5781-60f0-4470-953f-0feaa72b3910","originalAuthorName":"卢磊卢柯"}],"categoryName":"|","doi":"DOI: 10.3724/SP.J.1037.2010.00462","fpage":"1422","id":"483718a1-ff05-44df-8917-87f985764470","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9f9cc1fc-9ab1-4999-8ebc-a20c36637fd2","keyword":"纳米孪晶","originalKeyword":"纳米孪晶"},{"id":"fed4c8cf-689d-4916-ad50-6977126d5cec","keyword":"mechanical property","originalKeyword":"mechanical property"},{"id":"96480717-01f8-45eb-87bf-0e3828341578","keyword":"physical property","originalKeyword":"physical property"},{"id":"20385a6a-3e23-4a39-b967-c8dbd90c9cf7","keyword":"deformation mechanism","originalKeyword":"deformation mechanism"},{"id":"b1152f9d-ce7e-46cb-a9f0-52f1f7891db0","keyword":"syntheses technique","originalKeyword":"syntheses technique"}],"language":"zh","publisherId":"0412-1961_2010_11_5","title":"纳米孪晶金属材料","volume":"46","year":"2010"},{"abstractinfo":"材料的强化通常是在材料内部引入各种缺陷以阻碍位错运动来实现,如固溶强化、弥散强化、细晶强化和应变强化等,但这些传统的强化途径无可避免地会影响材料的塑性形变能力,导致塑性和韧性的降低.利用纳米尺度孪晶界面实现材料强化可避免上述缺点.本文对纳米孪晶强化原理和纳米孪晶金属研究进展进行了简要综述,分别讨论了纳米孪晶变形机制、纳米孪晶金属的部分力学行为(如强度、塑性、应变速率敏感性和加工硬化等)和物理性能(如导电性),以及纳米孪晶金属的制备技术等相关问题.","authors":[{"authorName":"卢磊","id":"f86a6613-17ef-42df-8df0-581264e25d64","originalAuthorName":"卢磊"},{"authorName":"卢柯","id":"d93d67d6-f190-45c2-81f1-d50f642da74c","originalAuthorName":"卢柯"}],"doi":"10.3724/SP.J.1037.2010.00462","fpage":"1422","id":"6f9688bc-896b-4e7c-b51d-b037b20bfaf9","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"98636af2-3fc0-441c-bba8-35b43b92b340","keyword":"纳米孪晶","originalKeyword":"纳米孪晶"},{"id":"12864bc3-7037-4688-8dbf-393fe888e772","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"095a0fed-d741-4cd2-ab8f-526c5a609d19","keyword":"物理性能","originalKeyword":"物理性能"},{"id":"ec7d4913-5167-4b05-924f-b817544c2325","keyword":"变形机理","originalKeyword":"变形机理"},{"id":"2c9af977-5216-4fc5-978a-b368c367d375","keyword":"制备技术","originalKeyword":"制备技术"}],"language":"zh","publisherId":"jsxb201011011","title":"纳米孪晶金属材料","volume":"46","year":"2010"},{"abstractinfo":"一些金属基结构材料,不需要增加Cr和A1含量而只需“纳米晶化”,就能够在高温环境下形成保护性Cr2O3或Al2O3氧化膜.纳米晶化是施加高Cr高A1涂层之外提高金属材料抗高温腐蚀性能的另一途径.近20年来,纳米晶金属材料的高温腐蚀行为已广泛报道.本文简要评述了纳米晶金属材料的高温腐蚀特性、纳米晶化提高金属抗氧化性能的根本原因以及亟待澄清的问题.","authors":[{"authorName":"彭晓","id":"c50b4f2a-803a-4dad-b6e7-140cd95cbb43","originalAuthorName":"彭晓"},{"authorName":"王福会","id":"a58abfdc-0e56-4cbb-9bac-575e4b2ac1f0","originalAuthorName":"王福会"}],"doi":"10.3724/SP.J.1037.2013.00604","fpage":"202","id":"c48351fc-8521-4c03-b056-fad90e74ed15","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a5bd799c-5dc2-44a8-a00f-22cd69360bb5","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"e454e186-6534-4d75-bfb5-2b77ad778b96","keyword":"合金","originalKeyword":"合金"},{"id":"b4477172-6adf-46e8-a7d9-76c2f3abc49c","keyword":"高温腐蚀","originalKeyword":"高温腐蚀"},{"id":"06886f8b-a7e7-4e52-a610-2550c2af186a","keyword":"选择性氧化","originalKeyword":"选择性氧化"},{"id":"27ca3333-f2fa-4c7e-9f7e-bad667f7a701","keyword":"黏附性","originalKeyword":"黏附性"}],"language":"zh","publisherId":"jsxb201402010","title":"纳米晶金属材料的高温腐蚀行为","volume":"50","year":"2014"},{"abstractinfo":"超细晶/纳米晶金属材料具有优异的力学性能,广泛应用于航天、航空、机械、电气、医学等领域.蠕变经常是在高应力或高温下工作的零部件失效模型的主要变形机制之一,因此对蠕变行为进行系统深入的研究是非常必要的.近年来,蠕变形为研究也成为了超细晶/纳米晶金属材料领域的一个重要发展方向.本文综述了纳米粉末合成、电解沉积和剧烈塑性变形制备的超细晶/纳米晶金属材料的蠕变行为研究进展.介绍了蠕变性能研究的主要方法——单轴蠕变试验和纳米压痕蠕变试验,对比了两种试验方法的测试数据.重点从稳态蠕变应力指数、蠕变激活能和蠕变应变速率方面论述了纳米粉末合成、电解沉积和剧烈塑性变形制备的超细晶/纳米晶金属材料的蠕变行为,分析了超细晶/纳米晶金属材料的晶界滑动和晶界扩散蠕变机制以及位错运动蠕变机制,同时进一步指出蠕变行为及机制研究中存在的问题及发展趋势.","authors":[{"authorName":"刘晓燕","id":"0be3ccca-685f-4c26-be97-30bffe408918","originalAuthorName":"刘晓燕"},{"authorName":"赵西成","id":"fbadfe12-8d1f-44f6-8e2c-ee2e3121f070","originalAuthorName":"赵西成"},{"authorName":"杨西荣","id":"082dfd42-60fb-4ea4-9473-edb58b37bce2","originalAuthorName":"杨西荣"},{"authorName":"贾江平","id":"fc634fc5-d721-431a-af8a-6bd818dd5209","originalAuthorName":"贾江平"}],"doi":"10.13373/j.cnki.cjrm.XY15060902","fpage":"1282","id":"bbd2a008-746d-4563-8e82-1fe20e3fd58d","issue":"12","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"349d6de5-a902-425c-9fa5-91c44517a947","keyword":"超细晶/纳米晶","originalKeyword":"超细晶/纳米晶"},{"id":"ce6e86d9-86a7-4d0e-afa9-c617acdad185","keyword":"单轴蠕变","originalKeyword":"单轴蠕变"},{"id":"fd127230-b7e6-48e9-a8b9-b15923c28674","keyword":"纳米压痕蠕变","originalKeyword":"纳米压痕蠕变"},{"id":"3c68b28b-6a12-4eef-85e5-5bbb8e3e329c","keyword":"蠕变行为","originalKeyword":"蠕变行为"},{"id":"f2bcc91b-5796-493c-8e49-8fec7fb73e23","keyword":"蠕变机制","originalKeyword":"蠕变机制"}],"language":"zh","publisherId":"xyjs201612015","title":"超细晶/纳米晶金属材料的蠕变行为研究进展","volume":"40","year":"2016"},{"abstractinfo":"本文综述了纳米和超细晶金属材料的退火强化研究现状和发展趋势.本文关注致密纳米和超细晶材料的研究,首先介绍了电沉积纳米Ni、强塑性变形制得的超细晶金属钛和纯铝的退火强化的实验现象,随后综述了这一强化现象的微观机理,最后探讨了进一步的实验及理论分析的途径.","authors":[{"authorName":"张宁","id":"decb159a-c7eb-46d7-8a66-f76cb58e8aea","originalAuthorName":"张宁"},{"authorName":"沈耀","id":"18101640-7315-45fe-9dca-d0d4cd8405ff","originalAuthorName":"沈耀"},{"authorName":"张澜庭","id":"ca1b3fe4-8f50-4c29-964b-387e124a58a0","originalAuthorName":"张澜庭"},{"authorName":"单爱党","id":"4fce3ac5-4335-48c0-8811-d8cddec1c68a","originalAuthorName":"单爱党"}],"doi":"","fpage":"617","id":"f7fdf323-1d68-4ae0-b7fa-707d555cb517","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"48254d2a-6936-4c9a-a279-1b2d2c4aa20e","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"21f375a5-fc6c-465d-8a5c-7b0545e03472","keyword":"超细晶","originalKeyword":"超细晶"},{"id":"32117e63-2327-41fb-b865-9eb758af9954","keyword":"退火强化","originalKeyword":"退火强化"}],"language":"zh","publisherId":"clkxygc201004033","title":"纳米和超细晶金属材料的退火强化","volume":"28","year":"2010"},{"abstractinfo":"本文综述了纳米晶/微米晶复相金属材料的发展历程、微观组织设计、制备方法及其力学性能与变形机制.概述了现有材料体系和制备方法的优点与不足,指出开发新工艺和进一步优化纳米晶/微米晶复相金属材料的综合性能是未来的发展趋势.","authors":[{"authorName":"王鸿鼎","id":"7c00024e-d27f-435d-b93b-acdbcab3b60f","originalAuthorName":"王鸿鼎"},{"authorName":"喇培清","id":"addaf6c5-8e77-44d3-b8a6-36b3bfe46c53","originalAuthorName":"喇培清"},{"authorName":"师婷","id":"fe3d3dd3-e398-49fe-87fa-62452fd86f7c","originalAuthorName":"师婷"},{"authorName":"魏玉鹏","id":"472f15e6-31dc-4c02-a3ea-fb86aaf81760","originalAuthorName":"魏玉鹏"},{"authorName":"卢学峰","id":"ae779555-db79-4a5d-8e01-303e1114e59e","originalAuthorName":"卢学峰"}],"doi":"10.3969/j.issn.1001-4381.2013.04.017","fpage":"92","id":"0c6d899a-65b1-4ca6-81b5-8f47b065bdc7","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"ccc521ae-7338-4213-90ae-83975ccb5f21","keyword":"纳米晶/微米晶复相","originalKeyword":"纳米晶/微米晶复相"},{"id":"986cefc6-5fa9-41d8-aa4a-aad107946802","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"894d1c38-4f98-420a-b67d-b67a21a9bdf0","keyword":"变形机制","originalKeyword":"变形机制"},{"id":"e0b17eb2-46b0-4c29-ae43-55061b4179b9","keyword":"研究现状","originalKeyword":"研究现状"}],"language":"zh","publisherId":"clgc201304017","title":"块体纳米晶/微米晶复相金属材料研究现状及其发展趋势","volume":"","year":"2013"},{"abstractinfo":"探讨了新型金属材料的现状、应用与发展,包括金属间化合物、非晶带和大块金属玻璃合金、纳米晶粒尺度的金属材料及金属基复合材料等,并对其发展远景进行了预测.对传统金属材料的现状也进行了分析讨论,认为金属材料是最重要的结构材料和功能材料.全文分两期发表.","authors":[{"authorName":"陈国良","id":"d2c9ebb6-d3bc-44c4-9a43-e40a53b7e904","originalAuthorName":"陈国良"}],"doi":"10.3969/j.issn.1001-7208.2002.04.001","fpage":"1","id":"04ce778a-9fc4-4192-900c-b9765c55008c","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"fda8b961-0a09-4a8e-8446-02b6cacf6827","keyword":"新型金属材料","originalKeyword":"新型金属材料"},{"id":"c05f538e-c1fd-43e1-960e-f9ef851d9a09","keyword":"金属间化合物","originalKeyword":"金属间化合物"},{"id":"47648c54-c643-440d-9777-10ac243fbe88","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"226d230d-8de2-4b22-80eb-2cda28657ab7","keyword":"纳米金属","originalKeyword":"纳米金属"},{"id":"f66c3696-5937-49a0-b0f1-01b75a20494a","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"}],"language":"zh","publisherId":"shjs200204001","title":"新型金属材料(一)","volume":"24","year":"2002"},{"abstractinfo":"探讨了新型金属材料的现状、应用与发展,包括金属间化合物、非晶带和大块金属玻璃合金、纳米晶粒尺度的金属材料及金属基复合材料等,并对其发展远景进行了预测.对传统金属材料的现状也进行了分析讨论,认为金属材料是最重要的结构材料和功能材料.全文分两期发表.","authors":[{"authorName":"陈国良","id":"2ba71030-0315-45f5-8677-4e3e3a5391b9","originalAuthorName":"陈国良"}],"doi":"10.3969/j.issn.1001-7208.2002.05.001","fpage":"1","id":"3f0f8b81-4a56-4662-8e12-fd99d57eb018","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"fdc6f339-fe28-4d03-a656-0bb1c73961e6","keyword":"新型金属材料","originalKeyword":"新型金属材料"},{"id":"420b5b26-8a06-4042-914f-68bd6bd901ef","keyword":"金属间化合物","originalKeyword":"金属间化合物"},{"id":"20788c9d-2901-4695-bd1c-2a7777041e73","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"1b861934-d176-46b8-823c-a3be714277df","keyword":"纳米金属","originalKeyword":"纳米金属"},{"id":"559dfd39-6680-4cd6-ae92-05b379fc9852","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"}],"language":"zh","publisherId":"shjs200205001","title":"新型金属材料(二)","volume":"24","year":"2002"},{"abstractinfo":"综述了金属材料表面自纳米化技术的研究现状.表面机械加工自纳米化的原理是在一定的应力作用下,使金属材料表面层产生剧烈的塑性变形,导致晶粒细化.晶粒的细化机理主要取决于金属材料的晶格结构和层错能;表面自纳米化能显著提高金属材料的综合性能.展望了表面自纳米化技术的发展前景.","authors":[{"authorName":"韩靖","id":"b0450791-3437-4aa3-86f4-3a84560a818d","originalAuthorName":"韩靖"},{"authorName":"盛光敏","id":"9b66db30-4707-41c8-bcda-5eff3248430f","originalAuthorName":"盛光敏"},{"authorName":"胡国雄","id":"913508ed-42ae-4624-9da5-f3099dcef1f8","originalAuthorName":"胡国雄"}],"doi":"","fpage":"2","id":"03e916c1-4af4-4d0e-8686-86a04c52807d","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1e7dd053-8da3-423a-abac-99c6226b058d","keyword":"自纳米化","originalKeyword":"自纳米化"},{"id":"fa7f548f-f9f0-4b85-a7f0-92fd89234bd1","keyword":"塑性变形","originalKeyword":"塑性变形"},{"id":"e2b3dc11-f9a9-418d-904a-d13770e0a0f7","keyword":"层错能","originalKeyword":"层错能"},{"id":"2b9795b1-1085-495d-b20f-82e98e1f69f3","keyword":"机械性能","originalKeyword":"机械性能"}],"language":"zh","publisherId":"cldb2007z1001","title":"金属材料表面自纳米化研究现状","volume":"21","year":"2007"}],"totalpage":9661,"totalrecord":96601}