机械工程材料, 2001, 25(6): 38-41. doi: 10.3969/j.issn.1000-3738.2001.06.012
X15CrNiSi2520钢焊缝超高温服役失效分析
1.科技大学机械与材料工程学院,
2.构公司,
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"导管桨可以有效提高推进效率,相比于金属导管,复合材料导管可以有效地减少导管螺旋桨重量,有利于导管桨的工程应用.采用纵、环肋的导管结构设计,克服了复合材料导管刚度较低的缺点.分别以干、湿模态为目标函数,利用ANSYS有限元软件APDL优化设计理论,对导管环肋分布位置进行了优化设计,给出了导管的最优结构形式,并比较了一阶干、湿模态频率和振型的异同.研究结果表明,复合材料导管一阶湿模态频率约为一阶干模态频率的25%,但振型特征相差不大;给出的结构优化设计方法对复合材料导管结构的工程设计具有一定的指导意义.","authors":[{"authorName":"周晓敏","id":"32a5e61a-3316-41f9-81b1-6447919cf558","originalAuthorName":"周晓敏"},{"authorName":"王观石","id":"5bd845e5-bc5a-4647-8baf-5613b0d74150","originalAuthorName":"王观石"}],"doi":"","fpage":"38","id":"fac488fe-09ea-46b0-9656-5034896b2b1c","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"66c3eb03-282d-4835-b5c1-a7ee1e014583","keyword":"优化设计","originalKeyword":"优化设计"},{"id":"cea05348-c3b2-429f-88a8-fb2f537b6fb6","keyword":"复合材料导管","originalKeyword":"复合材料导管"},{"id":"8da630b9-5f78-4d12-b0bf-dd0caebce530","keyword":"湿模态","originalKeyword":"湿模态"}],"language":"zh","publisherId":"blgfhcl201501007","title":"复合材料导管结构设计和有限元优化","volume":"","year":"2015"},{"abstractinfo":"应用旋转模态理论和CFD方法研究贯流叶轮的离散噪声特性,并分析贯流风机远场噪声主要呈现宽频的原因.设计了三种不同的蜗壳匹配方案,以控制贯流风机内主要的涡结构.通过采用CFD方法计算不同方案中贯流风机内部涡流动结构主要位置,确定出贯流叶轮上下游发生干涉的叶片数.根据模态分析理论,计算了不同蜗壳及蜗舌匹配方案中贯流叶轮的截止率.计算结果表明,由于叶轮内主流速度较低,使得贯流风机的离散噪声不明显.","authors":[{"authorName":"甘加业","id":"9c43df1d-5841-4bf5-bd1a-44731389808b","originalAuthorName":"甘加业"},{"authorName":"薛永飞","id":"4cb70986-8dc3-4d0e-b50f-e1b34979bac1","originalAuthorName":"薛永飞"},{"authorName":"刘映","id":"aa566304-4b5a-4d88-8bd8-6ebae37cc814","originalAuthorName":"刘映"},{"authorName":"吴克启","id":"adc31f12-16f9-4f07-b805-45f9478592e0","originalAuthorName":"吴克启"}],"doi":"","fpage":"1307","id":"68c4a9b5-345d-4abd-b5d8-9834a49221e9","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"84dffaa6-15ff-459c-85a4-1e9663e5d895","keyword":"模态分析","originalKeyword":"模态分析"},{"id":"eb0617fb-b8da-4edf-ae93-6bfd03c6ee0e","keyword":"贯流风机","originalKeyword":"贯流风机"},{"id":"e80e98d4-b313-42f2-a2d2-15f296045815","keyword":"气动噪声","originalKeyword":"气动噪声"},{"id":"6f06625b-c537-4b80-8ed7-1f6b0154f92a","keyword":"CFD","originalKeyword":"CFD"}],"language":"zh","publisherId":"gcrwlxb201008012","title":"贯流叶轮的旋转模态分析","volume":"31","year":"2010"},{"abstractinfo":"综述了消除复合材料界面裂纹应力奇异性及求解界面模态混合度的主要方法,分析讨论了各个方法的优缺点.通过分析讨论发现:模态混合度表征界面力学性能可以准确地描述界面裂纹尖端处各应变能释放率分量的振荡特性;求解与裂纹扩展长度无关的各应变能释放率分量及模态混合度是研究复合材料界面裂纹问题的难点;采用混合模态界面力学性能试验方法验证基于正则化长度等求解模态混合度方法的有效性,进而准确预测复合材料分层的发生及扩展是今后研究复合材料界面力学问题的发展方向.","authors":[{"authorName":"范学领","id":"3fa2571d-1cb2-4090-9833-202e8f902cf3","originalAuthorName":"范学领"},{"authorName":"孙秦","id":"86a3729f-37af-46fb-a9a0-bf7777838e79","originalAuthorName":"孙秦"},{"authorName":"原梅妮","id":"b2fe89c8-c9cc-4f7c-a6c6-99a01f861716","originalAuthorName":"原梅妮"},{"authorName":"菊池正纪","id":"72aa805e-b912-40e3-ac6e-75f38db5f12f","originalAuthorName":"菊池正纪"}],"doi":"10.3969/j.issn.1007-2330.2009.02.001","fpage":"1","id":"5b97ddb9-6bb6-4c88-96dd-987879cd407a","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"6dfd52ff-1fea-4703-bdab-6eabfb72969c","keyword":"模态混合度","originalKeyword":"模态混合度"},{"id":"572720de-bdaf-486f-8fd3-920e37759aed","keyword":"应变能释放率","originalKeyword":"应变能释放率"},{"id":"03e3744d-9012-478b-86cf-c7d572d874a9","keyword":"界面结合强度","originalKeyword":"界面结合强度"},{"id":"f0663822-c64d-470e-b76e-afb1944eb5c8","keyword":"复合材料分层","originalKeyword":"复合材料分层"},{"id":"97d95c08-93f1-4acf-8894-032366bc75ca","keyword":"虚裂纹闭合方法","originalKeyword":"虚裂纹闭合方法"}],"language":"zh","publisherId":"yhclgy200902001","title":"复合材料界面模态混合度研究","volume":"39","year":"2009"},{"abstractinfo":"以受横向简谐激励机械载荷和热载荷共同作用的、金属基陶瓷功能梯度材料圆柱曲板为研究对象,利用有限元软ANSYS对两边固支两边自由的功能梯度材料柱面曲板进行建模,并对其在热环境下进行模态分析.这里采用了比较适合薄板的SHELL99单元模型,给出不同几何和物理参数条件下FGM圆柱面曲板前8阶振动模态图,得到固其有频率,并且对前8阶模态做模态进行分析,结果发现圆柱曲板的模态振型主要有横向和扭转振动,其中前两阶模态以横向振动为主.分析结果为进一步的理论研究、对结构设计和参数优化提供了有效的依据.","authors":[{"authorName":"杨莉","id":"48253850-4057-48fa-8406-b814051c0c9f","originalAuthorName":"杨莉"},{"authorName":"郝育新","id":"87e0293c-342a-4538-891c-473431c8ed65","originalAuthorName":"郝育新"},{"authorName":"杨绍武","id":"c3baba28-5e5e-4c80-b240-1440879d908a","originalAuthorName":"杨绍武"},{"authorName":"刘亚泽","id":"d4b71568-c9a4-433c-9cd2-7b76cfecde96","originalAuthorName":"刘亚泽"}],"doi":"","fpage":"198","id":"5f537ae2-571a-40e9-891d-000f84b2a638","issue":"8","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"4230654a-4e16-4898-9a17-1c5cf447a4ad","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"eccba2a2-06a6-4e5e-a729-661ab771fd2f","keyword":"柱面曲板","originalKeyword":"柱面曲板"},{"id":"4b9356bc-f169-4f32-8ea4-be0976917078","keyword":"模态分析","originalKeyword":"模态分析"},{"id":"471005cd-ed71-4741-bafa-cfb7bf7143b0","keyword":"ANSYS","originalKeyword":"ANSYS"}],"language":"zh","publisherId":"jsrclxb201408035","title":"热环境下FGM圆柱曲板的模态分析","volume":"35","year":"2014"},{"abstractinfo":"对近期国内外在风机叶片静载荷测试和模态测试方面的研究成果、测试标准和测试机构进行了评述.","authors":[{"authorName":"许晓燕","id":"3bdbdc30-8939-4fc2-8199-1ec1ba80094b","originalAuthorName":"许晓燕"},{"authorName":"颜鸿斌","id":"52ff4f70-26b1-4907-b249-ba583f0a17e2","originalAuthorName":"颜鸿斌"},{"authorName":"李东","id":"852b9b14-221d-4501-9196-76bc31a9afea","originalAuthorName":"李东"},{"authorName":"安明康","id":"528f3132-3b53-47a6-ab90-427a6a2f04ac","originalAuthorName":"安明康"},{"authorName":"蔡建强","id":"51360d80-52cc-4352-9be2-3591316d004a","originalAuthorName":"蔡建强"}],"doi":"10.3969/j.issn.1007-2330.2011.02.011","fpage":"43","id":"fa92d07e-9a1d-4952-8029-3456c77431e5","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"dbca0bee-43cc-4af7-ba97-ff786c91db06","keyword":"风机叶片","originalKeyword":"风机叶片"},{"id":"f3ede6e1-b107-4631-8353-38d8d5b0f127","keyword":"静载荷测试","originalKeyword":"静载荷测试"},{"id":"a92cb210-c9d3-45e5-8649-bcbe86ec919d","keyword":"模态测试","originalKeyword":"模态测试"}],"language":"zh","publisherId":"yhclgy201102011","title":"风机叶片静载荷和模态测试技术","volume":"41","year":"2011"},{"abstractinfo":"TBCC(涡轮基组合循环)在过渡模态的工作,是这种新型高速动力系统的关键问题.本文针对基于内乘波概念的内并联式TBCC进气道进行了其过渡模态流场的研究.首先,应用本团队自主提出的内乘波式进气道设计概念,提出一种新型TBCC进气道设计方案.然后,验证了其在设计马赫数4.0下实现全流量捕获,在模态转换时,分流板的分流是有效的.针对其在过渡模态马赫数2.5的性能,通过基于数值模拟的设计参数分析,发现在内参考收缩比为3.11时进气道流通面积合适可实现自起动、且综合性能较优.研究还发现,分流板偏转角度范围越小,分流段流动越好、通流出口总压恢复系数也越高.","authors":[{"authorName":"左逢源","id":"4873a99f-202f-4bc9-991c-bf385238ca72","originalAuthorName":"左逢源"},{"authorName":"黄国平","id":"e6fb7a67-b365-449a-9018-46689f8773e8","originalAuthorName":"黄国平"},{"authorName":"陈杰","id":"77772ade-1c8e-4249-93f9-1d99633a98cd","originalAuthorName":"陈杰"},{"authorName":"唐伟员","id":"a8e648e6-32c6-47b1-8525-272560efc899","originalAuthorName":"唐伟员"}],"doi":"","fpage":"274","id":"2b20d3af-671f-499e-8478-16bfb28e3301","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9ad7d8d7-cdd6-44ea-b212-8bd07e47b433","keyword":"涡轮基组合循环","originalKeyword":"涡轮基组合循环"},{"id":"b6d191d9-6e0f-4253-a76f-62cc7efaaeae","keyword":"内乘波式进气道","originalKeyword":"内乘波式进气道"},{"id":"fbd0ac98-5c5d-435c-bacd-f0deeaeae5d7","keyword":"变几何方案","originalKeyword":"变几何方案"},{"id":"b8b23ee3-0242-4275-8dc9-9a7c336c3c82","keyword":"过渡模态","originalKeyword":"过渡模态"}],"language":"zh","publisherId":"gcrwlxb201502010","title":"基于内乘波概念的TBCC进气道过渡模态研究","volume":"36","year":"2015"},{"abstractinfo":"近年来,风电机组越来越向大型化方向发展,叶片长度迅速增大,这使得风电叶片的动态响应研究越来越重要.本文利用对某MW级风电叶片进行了全尺寸模态试验的研究.之后针对大型风电叶片的特点,利用有限元方法对叶片的模态进行了数值模拟.通过对计算和试验结果的比较,验证了计算方法的可靠性.","authors":[{"authorName":"毛火军","id":"e52b93dd-1258-47e9-8a5d-fd0a02e6f2c4","originalAuthorName":"毛火军"},{"authorName":"石可重","id":"f7b2e3ad-b12c-45d9-bd1f-e9d18af7c67b","originalAuthorName":"石可重"},{"authorName":"李宏利","id":"43aac393-3fe3-46e1-89b7-0a757fb730f5","originalAuthorName":"李宏利"},{"authorName":"王建礼","id":"27664745-cba2-4135-b140-b851c396a7a3","originalAuthorName":"王建礼"}],"doi":"","fpage":"601","id":"56d4b301-6500-4351-a361-4af80fa8cf03","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2a7526de-495e-41fd-bf64-4c97365216d7","keyword":"风电叶片","originalKeyword":"风电叶片"},{"id":"53c8057f-cd1d-41ba-bf17-d50a0e491e47","keyword":"模态测试","originalKeyword":"模态测试"},{"id":"700152ea-3e5a-4d79-af9c-192115bbd07c","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200904016","title":"大型风电叶片的模态测试与数值模拟","volume":"30","year":"2009"},{"abstractinfo":"分析了汽车磁流变半主动悬架模型,为了抑制磁流变悬架的垂直振动,提高汽车乘坐舒适性,从提取汽车簧载质量的振动模式入手,建立了振动的特征模型,给出了在不同振动模式下寻求不同控制策略的方法,以此设计了多模态智能控制器,并用建立的汽车悬架振动仿真系统进行了脉冲输入和随机输入仿真实验.仿真结果表明,对汽车磁流变悬架的垂直振动进行多模态控制能有效提高汽车乘坐舒适性.","authors":[{"authorName":"李锐","id":"8a85e8cd-a0c4-4b29-bdfa-7794a0ac6a6f","originalAuthorName":"李锐"},{"authorName":"陈伟民","id":"b887202d-aa5e-40f3-9530-4c14d804061c","originalAuthorName":"陈伟民"},{"authorName":"余淼","id":"64ba8fbd-65c3-4264-90eb-5cbba2b4043c","originalAuthorName":"余淼"},{"authorName":"廖昌荣","id":"ac34bece-aaeb-4dec-95ed-b53b6e5c630e","originalAuthorName":"廖昌荣"},{"authorName":"董小闵","id":"3c56e1fe-e971-43f9-8cf5-102d7e9b1405","originalAuthorName":"董小闵"}],"doi":"","fpage":"814","id":"be6bb8de-d3ca-49fa-8e9e-b8b0df45e884","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"0813cc07-2fb0-482d-b7e9-b9b4731be371","keyword":"汽车","originalKeyword":"汽车"},{"id":"97a0cb32-9ce1-4b85-8d0d-70c839074555","keyword":"磁流变阻尼器","originalKeyword":"磁流变阻尼器"},{"id":"0207036c-ca69-4b0f-89ae-b942c46f9f5f","keyword":"特征模型","originalKeyword":"特征模型"},{"id":"9a15e102-6b91-4f6b-9683-2758d9486353","keyword":"多模态控制","originalKeyword":"多模态控制"},{"id":"45b0e50c-45be-4c57-83be-00ad794d0701","keyword":"仿真","originalKeyword":"仿真"}],"language":"zh","publisherId":"gncl200605044","title":"汽车磁流变悬架振动多模态智能控制","volume":"37","year":"2006"},{"abstractinfo":"流管实验装置是测量有流动情况下航空发动机消声短舱内声衬声阻抗的主要装置.本文发展了一种解析的模态匹配方法进行在平均流有声衬条件下矩形流管中声传播的计算.用同伦方法求解特征值问题,并与用环绕积分求解的结果进行比较.声场通过轴向阻抗间断面的声压和声质点速度积分相等计算.第一个算例是无流动、硬壁、有限长、考虑端口反射的情况,并与北航流管实验台测量数据进行了对比;第二个算例为有流动情况下有限长声衬管道不考虑端口反射的声场计算,它与文献中NASA流管实验结果和CAA计算结果符合得很好.","authors":[{"authorName":"管莹","id":"16ce33e8-a511-40c4-9d52-0e7d044af18f","originalAuthorName":"管莹"},{"authorName":"王同庆","id":"f2e3147c-3e82-4b26-a897-4f9164b48281","originalAuthorName":"王同庆"},{"authorName":"王利","id":"6549cc95-4af7-450a-a546-afdfe1817625","originalAuthorName":"王利"}],"doi":"","fpage":"595","id":"d3045ab7-01dd-4db9-821a-93f9ad25f704","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3bf43eb1-7800-4a55-be60-39a4ca8da3ad","keyword":"流管","originalKeyword":"流管"},{"id":"b95aeb64-a29b-4f11-a9ad-d607043934fb","keyword":"声传播","originalKeyword":"声传播"},{"id":"a6ba5652-ab2a-4944-92d6-4ec40b15565d","keyword":"模态匹配","originalKeyword":"模态匹配"},{"id":"b03ce27c-3554-47d5-b71d-d69b8b6511e7","keyword":"声衬","originalKeyword":"声衬"}],"language":"zh","publisherId":"gcrwlxb200604018","title":"流管实验装置中声传播计算的模态方法","volume":"27","year":"2006"},{"abstractinfo":"采用 Image-Pro Plus 软件表征闭孔泡沫铝的孔结构,在此基础上采用 PolyMAX 模态分析法研究了闭孔泡沫铝的模态阻尼比与孔隙率、平均孔径和固有频率之间的关系,并通过模态置信度矩阵验证各阶试验模态的独立性。结果表明:各阶模态之间具有较高的独立性,泡沫铝的阻尼比随孔隙率的提高以及平均孔径的降低而呈增加的趋势,且各阶固有频率随孔隙率的增加而降低。","authors":[{"authorName":"陈兵","id":"7f93adaa-e75e-4334-ba0a-d45dd5cd674b","originalAuthorName":"陈兵"},{"authorName":"薛俊强","id":"32f359a8-d2d4-4e6d-bf41-75dcc09af481","originalAuthorName":"薛俊强"},{"authorName":"王辉","id":"7d0d9605-2c30-4f35-b94b-d379207527be","originalAuthorName":"王辉"},{"authorName":"杨东辉","id":"e95a2db0-7c92-4216-9438-bc92cd0ae38a","originalAuthorName":"杨东辉"},{"authorName":"王文瑞","id":"49c6e0fd-82ff-4db7-8d9b-6919ce390bfc","originalAuthorName":"王文瑞"}],"doi":"10.11973/jxgccl201603014","fpage":"57","id":"92f741f9-a47a-4964-a604-cec6d03f4f04","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"44ead044-7e69-4f5f-a692-b63e0edb6389","keyword":"泡沫铝","originalKeyword":"泡沫铝"},{"id":"e887a61f-e961-4340-9be9-3931123649ab","keyword":"PolyMAX 模态分析法","originalKeyword":"PolyMAX 模态分析法"},{"id":"2e492681-cbc5-47cf-8b88-92f3cc8df340","keyword":"模态阻尼比","originalKeyword":"模态阻尼比"}],"language":"zh","publisherId":"jxgccl201603014","title":"基于 PolyMAX 模态分析法研究闭孔泡沫铝的阻尼特性","volume":"40","year":"2016"}],"totalpage":161,"totalrecord":1605}