{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用溶胶-凝胶燃烧合成法,在750℃热处理2 h的条件下制备了SmBO3粉体,颗粒大小在100 nm左右.红外吸收光谱显示材料在500~1400 cm-1波数范围内,存在较为集中的吸收峰.此外,由于Sm3+的6H5/2→6F9/2跃迁,使得SmBO3粉体在1.05~1.15μm的范围内反射率降低.因此,SmBO3粉体可能是一种性能较好的针对1.06和10.6μm激光的激光光防护材料和滤光功能材料.","authors":[{"authorName":"何伟","id":"b888f9c7-303f-4f81-bb49-4f97fe6072a3","originalAuthorName":"何伟"},{"authorName":"张晶","id":"00f93ed1-abc7-417c-a8ef-c7f048ed1305","originalAuthorName":"张晶"},{"authorName":"张其土","id":"8c4bed8c-33ff-4eca-8522-365ba914cd09","originalAuthorName":"张其土"}],"doi":"10.3969/j.issn.0258-7076.2009.03.012","fpage":"348","id":"42155757-af3b-4a4c-8be5-48a1548cb8fa","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"449a650f-d2e6-40a6-903d-4782687ba41f","keyword":"SmBO3","originalKeyword":"SmBO3"},{"id":"dd357cc3-2c4f-45ef-809d-56400ac62626","keyword":"溶胶-凝胶燃烧合成法","originalKeyword":"溶胶-凝胶燃烧合成法"},{"id":"bfb75b77-16ac-4d56-a8a0-6dea7b3261d4","keyword":"光学吸收","originalKeyword":"光学吸收"}],"language":"zh","publisherId":"xyjs200903012","title":"溶胶-凝胶燃烧合成法制备SmBO3粉体及其性能研究","volume":"33","year":"2009"},{"abstractinfo":"利用溶胶-凝胶燃烧合成法和共沉淀法成功地制备出单一均相的Y2O3:Yb,Er前驱体,采用传统的硫熔法制备了单一均相的Y2O2S:Yb,Er粉体,同时对传统硫熔法的后处理过程进行了改进.分别采用XRD、FTIR、SEM和EDS对合成的粉体进行了物相分析、化学键分析、形貌表征和元素组成分析,并对粉体进行了发光性能测试,在980nm激发下,共沉淀法制备的前驱体硫化后得到的Y2O2S;Yb,Er发光强度比溶胶-凝胶燃烧合成法制备的前驱体硫化后得到的Y2O2S:Yb,Er发光强度高得多.","authors":[{"authorName":"韩朋德","id":"3720e859-e0c1-4118-a136-7516ab1f5fc1","originalAuthorName":"韩朋德"},{"authorName":"王丽熙","id":"3d663fb2-5977-439f-a6aa-299baf07eeb6","originalAuthorName":"王丽熙"},{"authorName":"黄啸谷","id":"ecb63067-5d07-4202-9ab4-f2e8b0f54c64","originalAuthorName":"黄啸谷"},{"authorName":"张乐","id":"9e732672-ba07-4412-900f-6efa1bdea6d9","originalAuthorName":"张乐"},{"authorName":"张其土","id":"1a826333-8cee-43b4-bfa2-f7dfcd5450f4","originalAuthorName":"张其土"}],"doi":"","fpage":"131","id":"593a4f39-ff60-488a-a82a-8153ac551f04","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9a0939be-d9fd-42aa-80c7-e66b1cf01487","keyword":"稀土硫氧化物","originalKeyword":"稀土硫氧化物"},{"id":"449ef275-c8eb-454b-8439-0ea85ec04e29","keyword":"上转换发光","originalKeyword":"上转换发光"},{"id":"ab78e6e1-98cf-4788-a97d-864854c6e698","keyword":"溶胶-凝胶燃烧合成法","originalKeyword":"溶胶-凝胶燃烧合成法"},{"id":"02d63fca-fc8b-448f-b9bb-bf2d695f4af2","keyword":"共沉淀法","originalKeyword":"共沉淀法"}],"language":"zh","publisherId":"cldb2010z1039","title":"2种方法制备的Y2O3:Yb,Er前驱体对Y2O2S:Yb,Er性能的影响","volume":"24","year":"2010"},{"abstractinfo":"研究了以硝酸锂、硝酸铝和尿素为原料,用溶胶-凝胶燃烧合成法制备γ-LiAlO2粉体的工艺.采用热重分析(TG-DTA)、X射线衍射(XRD)、红外光谱(IR)、扫描电镜(SEM)对反应前驱体、反应过程、燃烧产物进行了表征测试.分析了原料配比、溶胶前驱体pH值对反应产物特性的影响,并初步探讨了反应的历程.","authors":[{"authorName":"杨细平","id":"b1c8706c-15c1-4e6d-8b1e-c294efa8b658","originalAuthorName":"杨细平"},{"authorName":"邱祖民","id":"42877381-ecd7-44b2-987f-2215d72d8c60","originalAuthorName":"邱祖民"},{"authorName":"刘艳凤","id":"c35adb1d-1e7f-446d-b849-3817fc0e1a9d","originalAuthorName":"刘艳凤"},{"authorName":"邱俊明","id":"68163d87-1c4c-4313-b7dd-b8cf0bcb73b0","originalAuthorName":"邱俊明"}],"doi":"","fpage":"213","id":"c973d1fc-345d-4f36-92ca-1eb785490c2e","issue":"z3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8c192656-264a-4e13-a3c2-09177a4f6c3b","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"972193a6-3cd0-4aa9-a984-178cc0e90420","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"342ca052-6da6-4591-af09-57a7dac9eb03","keyword":"γ-LiAlO2","originalKeyword":"γ-LiAlO2"},{"id":"6836b42c-442d-4af2-b938-9466850cc023","keyword":"配比","originalKeyword":"配比"},{"id":"e18562fb-d833-4734-8dbb-4639a4448110","keyword":"pH值","originalKeyword":"pH值"}],"language":"zh","publisherId":"cldb2008z3069","title":"溶胶-凝胶燃烧合成法制备γ-LiAlO2","volume":"22","year":"2008"},{"abstractinfo":"本文采用溶胶-凝胶自燃烧合成法制备了SrFe12 O19.研究了柠檬酸配比对SrFe12O19的物相组成、形貌及磁性能的影响.当柠檬酸与金属离子摩尔比为3:1时,矫顽力为6518 Oe (518.83kA/m),比饱和磁化强度σs为84.45 A·m2/kg.通过对经过预烧和不经过预烧所制备出的两种样品的研究,发现不经过预烧制备出的样品其比饱和磁化强度明显大于经过预烧所制备出的样品的比饱和磁化强度.","authors":[{"authorName":"张贤","id":"b7b41508-b8fd-4c84-a62a-36cf0d76ed61","originalAuthorName":"张贤"},{"authorName":"马永青","id":"e9a73e71-8f28-4a56-beb4-85c9969d49b9","originalAuthorName":"马永青"},{"authorName":"吴丹丹","id":"1cc99509-281f-4c79-8c62-8a8de44763f4","originalAuthorName":"吴丹丹"},{"authorName":"马倩","id":"981718db-589a-4f5e-b2bf-0c51bfcdd8cd","originalAuthorName":"马倩"},{"authorName":"钱仕兵","id":"2d570071-8c88-4b5a-8185-952596cb8992","originalAuthorName":"钱仕兵"},{"authorName":"昝芬莲","id":"39c21d5d-5efa-4857-ad44-5192d00c409a","originalAuthorName":"昝芬莲"},{"authorName":"郑赣鸿","id":"d6d832d4-3cfa-4a39-a74a-d8c1086c7919","originalAuthorName":"郑赣鸿"},{"authorName":"李广","id":"7e0b0b0f-d138-447b-9fcc-440d05078ca6","originalAuthorName":"李广"},{"authorName":"吴明在","id":"d66a5e0e-c3d1-47df-bfe7-3ca2e218da50","originalAuthorName":"吴明在"},{"authorName":"刘先松","id":"12681ccc-63ca-43f3-a5c8-9f9a35b9c933","originalAuthorName":"刘先松"}],"doi":"10.3969/j.issn.1007-4252.2011.06.009","fpage":"573","id":"57346068-795a-49a9-9685-059af42d33da","issue":"6","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"e46b3fe8-dd8b-484d-8923-cfd4f1ffb41e","keyword":"溶胶-凝胶自燃烧合成法","originalKeyword":"溶胶-凝胶自燃烧合成法"},{"id":"1bc8fde0-b610-4fbb-b3de-09388b606ba2","keyword":"锶铁氧体","originalKeyword":"锶铁氧体"},{"id":"f091d95c-9245-4326-b517-24e80f0b390c","keyword":"磁性能","originalKeyword":"磁性能"}],"language":"zh","publisherId":"gnclyqjxb201106009","title":"溶胶-凝胶自燃烧合成法制备SrFe12O19及其磁性能研究","volume":"17","year":"2011"},{"abstractinfo":"综述了凝胶-燃烧合成法制备纳米氧化物的原理和特点,重点分析了该工艺的主要影响因素,并展望了该工艺的发展趋势.","authors":[{"authorName":"许前丰","id":"606cae19-5669-44b5-9cb9-c597fe4143bf","originalAuthorName":"许前丰"},{"authorName":"严有为","id":"f442ff96-bc0d-45d6-9a99-b8d1ec585ad3","originalAuthorName":"严有为"}],"doi":"","fpage":"119","id":"3e279fb5-8c27-44b4-903a-70e117a00e5a","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f1cfff77-b067-4c88-876b-4d47a4eb1ec8","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"f0d3bae9-82e2-4658-bdff-f47526fac32b","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"b7956906-55b3-4ee5-bec2-ca4cf0bd8d81","keyword":"纳米氧化物颗粒","originalKeyword":"纳米氧化物颗粒"},{"id":"6b55c282-440f-42b6-a089-b8ecb0f167c4","keyword":"粉体","originalKeyword":"粉体"}],"language":"zh","publisherId":"cldb2005z1039","title":"凝胶-燃烧合成法制备纳米氧化物颗粒的研究进展","volume":"19","year":"2005"},{"abstractinfo":"简要介绍了纳米金属氧化物的一些应用;综述了近年来纳米金属氧化物的制备方法——溶液燃烧合成法;其中着重评述了近年来改进的溶液燃烧制备方法:自蔓延溶胶-凝胶燃烧合成法、浸渍在惰性支撑物中的燃烧合成法、浸渍在活性支撑物中的燃烧合成法、盐助溶液燃烧合成法、微波助溶液燃烧合成法、乳液燃烧合成法和纤维素辅助溶液燃烧合成法;并展望了该领域今后的研究方向.","authors":[{"authorName":"欧玉静","id":"704880c5-bcad-424e-a491-9c30a280e423","originalAuthorName":"欧玉静"},{"authorName":"喇培清","id":"6101ac0f-a576-4845-b49e-022e5d065cdc","originalAuthorName":"喇培清"},{"authorName":"魏玉鹏","id":"206a7eb5-28b7-4bd6-baa2-f82c3dab3c4e","originalAuthorName":"魏玉鹏"},{"authorName":"朱丹丹","id":"636d7451-cefe-45d1-bd97-768a15217976","originalAuthorName":"朱丹丹"}],"doi":"","fpage":"36","id":"3955a602-b78d-4a2f-b050-d06184ffbdf9","issue":"21","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5c56f786-7537-454a-b27d-cbd9983dbb39","keyword":"溶液燃烧合成法","originalKeyword":"溶液燃烧合成法"},{"id":"860097d1-db95-40a5-802f-11c88371277d","keyword":"纳米金属氧化物","originalKeyword":"纳米金属氧化物"},{"id":"b8a496d0-8e4e-460e-bf9f-5e8660fc32ff","keyword":"自蔓延溶胶-凝胶燃烧合成法","originalKeyword":"自蔓延溶胶-凝胶燃烧合成法"},{"id":"3dbde840-7f36-421a-8103-3ae0acf4f519","keyword":"盐助溶液燃烧合成法","originalKeyword":"盐助溶液燃烧合成法"}],"language":"zh","publisherId":"cldb201221008","title":"溶液燃烧合成法制备纳米金属氧化物的研究进展","volume":"26","year":"2012"},{"abstractinfo":"以硝酸钇、硝酸铝为原料,采用溶胶-凝胶/燃烧合成结合法合成了钇铝石榴石(Y3Al5O12,YAG)超细微粉.用X射线衍射仪(D/Max-2550V型)及傅立叶红外光谱(FT-IR)确定前驱体和不同温度处理的粉末的相组成;借助于德国NETZSCH STA449C TG-MS热分析仪(升温速率为10℃/min)对前驱体粉末的热分解过程进行了研究,由JEM-200CX型透射电镜观察粉体的形貌.结果表明过多的柠檬酸和羧酸盐在400℃分解形成碳酸盐,在800℃YAG相开始逐渐形成,在900℃形成了结晶完全的YAG相,而没有中间相产生.经1000℃热处理获得了超细、分散良好、粒度为80nm左右的均匀粉体.","authors":[{"authorName":"李全明","id":"35ba547b-99cb-466d-b233-a0d7bd91269c","originalAuthorName":"李全明"},{"authorName":"邱发贵","id":"a1eb59ab-28a3-4de1-8514-c41f58dabdde","originalAuthorName":"邱发贵"},{"authorName":"张梅","id":"3cbecc33-8f14-43a0-9dbf-c8cd422e8f70","originalAuthorName":"张梅"},{"authorName":"李江","id":"e19befe0-2204-46b3-b855-7ac6433424ab","originalAuthorName":"李江"},{"authorName":"张万喜","id":"a0c1ba3b-d5a7-43dd-9c54-4a97b65cd5ba","originalAuthorName":"张万喜"}],"doi":"","fpage":"292","id":"249bd82b-8dca-4dac-81b8-745cd4219b86","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"bb9e5927-29f3-4fca-935d-8df68bfe5a75","keyword":"溶胶-凝胶/燃烧法","originalKeyword":"溶胶-凝胶/燃烧法"},{"id":"33a0ccea-3023-46e2-afd5-c3d3592bc768","keyword":"纳米粉体","originalKeyword":"纳米粉体"},{"id":"e4a3b85e-245b-4888-9a5a-6aff970fedd7","keyword":"YAG","originalKeyword":"YAG"},{"id":"b406cdce-2be5-49ab-a28d-c7318d06443c","keyword":"低温合成","originalKeyword":"低温合成"}],"language":"zh","publisherId":"xyjsclygc2008z1075","title":"溶胶凝胶燃烧法合成YAG纳米粉","volume":"37","year":"2008"},{"abstractinfo":"研究了以硝酸镍和柠檬酸为原料溶胶-凝胶自燃烧法制备氧化镍纳米颗粒的最佳工艺条件及配比.用热重分析(TG-DSC)、扫描电镜(SEM)和X射线衍射(XRD)对反应物、反应过程、产物氧化镍等进行了表征.研究了溶胶-凝胶pH值、原料配比对产物的影响并对反应机理进行了初步探讨.通过调整柠檬酸与硝酸镍的配比来避免镍的出现.本方法设备简单,操作方便易行.","authors":[{"authorName":"刘建华","id":"cd4c9d99-5a79-4a02-8712-a592d9ee6422","originalAuthorName":"刘建华"},{"authorName":"于美","id":"1284e2bb-bec3-43f9-9d51-3a080b26885a","originalAuthorName":"于美"},{"authorName":"李松梅","id":"f7324964-9491-426e-aa35-254248f557aa","originalAuthorName":"李松梅"}],"doi":"10.3969/j.issn.1001-4381.2006.z1.029","fpage":"110","id":"b34732b1-a137-4a56-abc6-ee7fcf5aae8b","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"d78552e4-6348-46d3-8a85-b2de37d7a5e6","keyword":"溶胶-凝胶自燃烧","originalKeyword":"溶胶-凝胶自燃烧"},{"id":"eab4901d-418e-4465-a878-965b5b486b26","keyword":"氧化镍纳米颗粒","originalKeyword":"氧化镍纳米颗粒"},{"id":"6c873637-edbe-4dfb-936d-726a7db15b85","keyword":"原料配比","originalKeyword":"原料配比"}],"language":"zh","publisherId":"clgc2006z1029","title":"溶胶-凝胶燃烧合成制备NiO纳米颗粒的研究","volume":"","year":"2006"},{"abstractinfo":"以硝酸镧、硝酸锰和柠檬酸为原料,采用溶胶凝胶燃烧合成技术制备了超细LaMnO_3粉末.借助XRD、DTA、SEM、FT-IR等分析仪器研究了溶胶凝胶-燃烧合成技术合成超细LaMnO_3粉末的过程,着重讨论了前驱体溶液不同pH值对溶胶凝胶燃烧合成过程及合成产物的影响. 结果发现,采用溶胶凝胶燃烧合成技术能合成纳米晶的LaMnO_3粉末,随前驱体溶液pH值增加,燃烧反应速率增加,合成粉体的平均晶粒尺寸随pH值增加而减小. 通过控制前驱体溶液pH值能一步合成超细LaMnO_3颗粒(粒径<200nm).","authors":[{"authorName":"李元元","id":"94875a51-2210-43c8-b506-cb0d180a8d76","originalAuthorName":"李元元"},{"authorName":"薛丽红","id":"2c6ed4f5-b455-4307-b17a-8f99bb892908","originalAuthorName":"薛丽红"},{"authorName":"严有为","id":"edb05ea2-4a05-4e9c-a137-bc782d226d2f","originalAuthorName":"严有为"}],"doi":"","fpage":"121","id":"47652d90-0b3a-482a-b595-c90b668be504","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9cbfaf79-4158-44a3-9d84-b0e9b4301aae","keyword":"溶胶凝胶-燃烧合成","originalKeyword":"溶胶凝胶-燃烧合成"},{"id":"5ff60502-b8b7-4ebe-8833-77d416f68b66","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"ed1873c5-5061-461b-b3bb-8c2d889f2b6d","keyword":"LaMnO_3","originalKeyword":"LaMnO_3"},{"id":"cb741358-1727-4f56-b4dc-7e801ef42b06","keyword":"pH值","originalKeyword":"pH值"}],"language":"zh","publisherId":"gncl201001036","title":"pH值对溶胶凝胶-燃烧合成纳米晶LaMnO_3粉末的影响","volume":"41","year":"2010"},{"abstractinfo":"综合利用溶胶凝胶及燃烧合成的优点制备了质子导体SrCe0.95Yb0.05O3-α粉体,发现柠檬酸的添加量是金属离子的2倍的情况下所制干凝胶燃烧时温度最高,合成产物最好;在燃烧合成中,柠檬酸作还原剂,而硝酸根离子作氧化剂;氧气不是燃烧反应的必要条件,但氧气可以加剧反应进行.XRD结果表明,1000℃即形成斜方钙钛矿结构,较高温固相反应合成温度降低了约400℃.","authors":[{"authorName":"朱冬冬","id":"6d03196e-d160-4d67-83da-4ae7e79be998","originalAuthorName":"朱冬冬"},{"authorName":"方建慧","id":"638c53b1-fb98-4f25-9f85-2d82f3722c56","originalAuthorName":"方建慧"},{"authorName":"施利毅","id":"55f9efb0-3a97-412d-84d9-603adfb634af","originalAuthorName":"施利毅"},{"authorName":"吴亚平","id":"1219a0f9-1e8e-404b-b40c-91dd8badce90","originalAuthorName":"吴亚平"},{"authorName":"丁伟中","id":"bbfeb318-636b-419b-8904-aa75e0cf06a1","originalAuthorName":"丁伟中"}],"doi":"","fpage":"1828","id":"9b42e923-652e-4b4e-be7f-665534d7ecad","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d725e01c-3e46-458f-a475-ba016faa7b6b","keyword":"质子导体","originalKeyword":"质子导体"},{"id":"5904ad53-cbe9-43b2-99ee-07bebb56a1a5","keyword":"SrCe0.95Yb0.05O3-α","originalKeyword":"SrCe0.95Yb0.05O3-α"},{"id":"abfc93c8-1485-45f2-9eef-6aeab615c984","keyword":"溶胶凝胶","originalKeyword":"溶胶凝胶"},{"id":"cf5babe3-100d-4eb3-bd81-b165f61cac9e","keyword":"燃烧合成","originalKeyword":"燃烧合成"}],"language":"zh","publisherId":"gncl2004z1509","title":"质子导体SrCe0.95Yb0.05O3-α溶胶凝胶燃烧合成的研究","volume":"35","year":"2004"}],"totalpage":3048,"totalrecord":30472}