欢迎登录材料期刊网

材料期刊网

高级检索

提出一种用HNO3、HClO4和HF消解样品、高分辨连续光源原子吸收光谱法测定硫在富燃空气-乙炔火焰中形成的CS双原子分子的吸收来测定煤中硫的新方法.实验用含硫标准溶液和煤的标准物质优化了仪器条件,并用不同混合酸对煤样的消解方法进行了比较.对可能存在的光谱和化学干扰、有机溶剂对硫的化合物CS吸收的影响进行了研究.结果表明:除了Fe 258.045 nm线与CS 258.056 nm线的波长差小于0.015 nm外,其他元素干扰线与CS线的波长差均大于0.015 nm,因此可以通过仪器的高分辨率使这些干扰线与CS线分开,克服干扰;Fe 258.045谱线虽然不能与CS 258.056 nm谱线完全分离,但是该谱线在富燃乙炔空气火焰中的吸收强度很弱,不能形成真正的干扰;Pb与溶液中的SO42-反应产生Pb-SO4沉淀降低了CS的吸收,可在溶液中加入乙酸铵溶液,使SO42-从PbSO4沉淀中释放出来而消除铅的干扰;HNO3、HClO4对CS的吸收影响不明显;在研究的甲醇、乙醇、乙酸、乙腈和丙酮5种有机溶剂中,只有乙醇对CS吸收有较显著的抑制作用,丙酮和乙腈能显著提高CS的吸收.对于CS 3条吸收线(257.594,258.056,257.961 nm),硫校准曲线的线性范围均为50~1 000mg/L,检出限分别为34mg/L,21 mg/L,12 mg/L.本方法用于煤标准物质和煤层样品中硫的测定,测定值与认定值相符,测定结果的相对标准偏差在0.053%~0.082%间(n=5).

参考文献

[1] Wenhua Geng;Tsunenori Nakajima;Hirokazu Takanashi;Akira Ohki .Utilization of oxygen flask combustion method for the determination of mercury and sulfur in coal[J].Fuel,2008(4):559-564.
[2] M. Borsaru;M. Berry;M. Biggs;A. Rojc .In situ determination of sulphur in coal seams and overburden rock by PGNAA[J].Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms,2004(0):530-534.
[3] Cechàk T;Thinovà L .Sulfur content measurement in coal by X-ray fluorescence method[J].Radiation Physics and Chemistry,2001,61:759-761.
[4] Huffman G P;Mitra S;Huggins F E et al.Quantitative analysis of all major forms of sulfur in coal by X-ray absorption fine structure spectroscopy[J].Energy & Fuels,1991,5:574-581.
[5] Landsberger S;Giovagnoli A;Debrun J L et al.Sulphur determination in coal by proton activation analysis[J].International Journal of Environmental Analytical Chemistry,1984,16:295-303.
[6] Laban K L;Atkin B P .The direct determination of the forms of sulphur in coal using microwave digestion and i.c.p-a.e.s analysis[J].Fuel,2000,79:173-180.
[7] Yu LL.;Fassett JD.;Vocke RD.;Kelly WR. .Determination of sulfur in fossil fuels by isotope dilution electrothermal vaporization inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry,2001(2):140-145.
[8] Adams M J;Kirkbright G F .The direct determination of sulphur by atomic absorption spectrometry using a graphite furnace electrothermal atomizer[J].Canad J Spectrosc,1976,21:127-133.
[9] Welz B;Sperling M.Atomic absorption spectrometry:3th edition[M].Wiley-VCH:Weinheim,1999
[10] Parvinen P;Lajunen L H J .Determination of sulphur hy tin,aluminium and indium monosulphide molecular absorption spectrometry using sharp line irradiation sources[J].Analytica Chimica Acta,1994,295:205-210.
[11] Welz B;Becher-Ross H;Florek S.High-resolution continuum source AAS[M].Wiley-VCH:Weinheim,2005
[12] 汪雨,李家熙.高分辨连续光源原子吸收光谱法测定植物中的硫[J].光谱学与光谱分析,2009(05):1418-1421.
[13] 汪雨,刘晓端.高分辨连续光源原子吸收光谱法对土壤中磷的测定[J].分析测试学报,2009(03):361-364.
[14] 汪雨,刘晓端.高分辨连续光源原子吸收光谱法测定植物中的磷[J].岩矿测试,2009(02):113-118.
[15] Pearse R W B;Gaydon A G.The Identification of Molecular Spectra[M].John Wiley and Sons,Inc,1976
[16] Nomenclature,symbols,units and their usage in spectrochemical analysis-Ⅱ.data interpretation[J].Pure and Applied Chemistry,1976,45:99-103.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%