为了数值模拟提拉(又名Czochralski)法获得单晶体的生长过程,本文采用有限容积法离散控制方程,采用非均匀的交错网格避免不合理的振荡压力场,采用三阶精度QUICK (Quadratic Upwind Interpolation of Convective Kinematics)格式离散对流项,采用延时修正来实施QUICK格式获得满足主对角占优的代数方程组,采用SIMPLE(Semi-implicit Method for Pressure Linked Equations)算法耦合压力和速度场,给出了基于上述方法的方程、算法,并发展了程序,计算了Wheeler标准问题,计算结果与文献相当一致,同时本算法能模拟计算高葛拉晓夫数时的流动,显示出非均匀网格QUICK格式模拟晶体生长的优越性;另外本文将这一算法运用到单晶硅的数值模拟中,计算结果令人满意.
参考文献
[1] | XU D;Shu C;Khoo B C .Numerical Simulation of Flows in Czochralski Crystal Growth by Second-order Upwind QUICK Scheme[J].Journal of Crystal Growth,1997,173:123-131. |
[2] | Buckle U;schafer M .Benchmark Results for the Numerical Simulation of Flow in Czochralski Crystal Growth[J].Journal of Crystal Growth,1993,126:682-694. |
[3] | Shu C.;Liu Y.;Chew YT. .AN EFFICIENT APPROACH FOR NUMERICAL SIMULATION OF FLOWS IN CZOCHRALSKI CRYSTAL GROWTH[J].Journal of Crystal Growth,1997(4):427-436. |
[4] | Jari Jarvinen;Risto Nieminen;Timo Tiihonen .Time Dependent Simulation of Czochralski Silion Crystal Growth[J].Journal of Crystal Growth,1997,180:468-476. |
[5] | Miller W;Schroder W .Numerical Modeling at the IKZ: an Overview and Outlook[J].Journal of Crystal Growth,2001,230:1-9. |
[6] | Geng X.;Guo ZY.;Wu XB. .NUMERICAL SIMULATION OF COMBINED FLOW IN CZOCHRALSKI CRYSTAL GROWTH[J].Journal of Crystal Growth,1997(1/2):309-319. |
[7] | 闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982 |
[8] | 陶文铨.计算传热学的近代进展[M].北京:科学出版社,2001 |
[9] | R A 劳迪斯.单晶生长[M].北京:科学出版社,1979 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%