欢迎登录材料期刊网

材料期刊网

高级检索

用溶胶凝胶法合成的纳米TiO2粉体作为原料,将该粉体在氨气中进行原位氮化制备了TiN纳米粉体.用XRD,TEM,化学分析等手段对合成的TiN纳米粉体的物相组成、形貌、成分进行了分析.实验分析表明:在1000℃和1100℃下分别氮化5h,可以制备粒径大约为40nm和80nm的TiN粉体,其TiN的含量分别为95.40%和98.37%;而在1000℃条件下氮化时间减少到2h时,TiN的含量仅为58.36%.氮化温度和氮化时间是合成纳米TiN的重要因素,提高合成温度和延长氮化时间均可形成纯度较高的TiN纳米粉体,但延长氮化时间更有利于获得粒径小的氮化钛粉体.

The TiN nanopowder was prepared by in-situ nitridation using TiO2 nanopowder as starting material. The crystalline characteristics, morphology and composition of the TiN nanopowders were investigated by XRD patterns, TEM and chemical analysis. The results indicate that TiN nanopowders are obtained with an average diameter of about 40nm and 80nm by nitridation at 1000℃ and 1100℃ for 5h respectively, and their contents of TiN are 95.40% and 98.37%. When nitridation time reduced to 2h at 1000℃ the content of TiN is only 58.36%. The results reveal that the nitridation temperature and time play important roles on synthesizing the TiN nanopowders. The higher temperature and longer nitridation time are beneficial to form the high purity titanium nitride powders, and prolonging nitridation time is more beneficial to obtain high purity particles with a smaller diameter compared with elevating temperature.

参考文献

[1] Price J B;Borland J O;Selbrede S .Properties of Chemical-vapor-deposited Titanium Nitride[J].Thin Solid Films,1993,236:11-318.
[2] Shaffer P T.Handbook of High-temperature Materials, Vol.1[M].New York: Plenum Press,1964:292-294.
[3] Zhu L P;Ohashi M;Yamanaka S .Novel Synthesis of TiN Fine Powders by Nitridation with Ammonium Chloride[J].Materials Research Bulletin,2002,37:75-483.
[4] Chang Y H;Chun J S;Oh J E et al.Enhancement of Titanium Nitride Barrier Metal Properties by Nitrogen Radical Assisted Metalorganic Chemical Vapor Deposition[J].Applied Physics Letters,1996,68:580-2582.
[5] Shim J H;Byun J S;Cho Y W .Mechanochemical Synthesis of Nanocrystalline TiN/TiB2 Composite Powder[J].Scripta Materialia,2002,47:93-497.
[6] Li J G;Gao L;Sun J;Zhang Q H, et al.Synthesis of Nanocrystalline Titanium Nitride Powders by Direct Nitridation of Titanium Oxide[J].Journal of the American Ceramic Society,2001,84:045.
[7] Wasche R;Steinborn G .Influence of the Dispersant in Gelcasting of Nanosized TiN[J].Journal of the European Ceramic Society,1997,17:21-426.
[8] Bellosi;A;Guicciardi S;Tampieri A .Development and Characterization of Electroconductive SiN-TiN Composite[J].Journal of the European Ceramic Society,1992,9:3-93.
[9] Gogotis Y G .Particulate Silicon Nitride-based Composite[J].Journal of Materials Science,1994,29:541-2556.
[10] Li J G;Gao L;Guo J K .Mechanical Properties and Electrical Conductivity of TiN-Al2O3 Nanocomposites[J].Journal of the European Ceramic Society,2003,23:9-74.
[11] Janes RA.;Aldissi M.;Kaner RB. .Controlling surface area of titanium nitride using metathesis reactions[J].Chemistry of Materials,2003(23):4431-4435.
[12] Munir Z A .Synthesis of High Temperature Materials by Self-propagating Combustion Method[J].American Ceramic Society Bulletin,1988,67:342-349.
[13] Dekker J P;Vanderput P J;Vering H J;Schoonman J.Vapor-phase Synthesis of Titanium Nitride[J].Journal of Materials Chemistry,1994(04):89-694.
[14] Ren R M;Yang Z G;Shaw L L .Nanostructured TiN Powder Prepared via an Integrated Mechanical and Thermal Activation[J].Materials Science and Engineering A,2000,286:5-71.
[15] Li J L;Hu K;Zhou Y .Formation of TiB2/TiN Nanocoposite Powder by High Energy Ball Milling and Subsequent Heat Treatment[J].Materials Science and Engineering A,2002,326:70-275.
[16] Hu J.;Lu Q. .Low-Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene-Thermal Route[J].Journal of the American Ceramic Society,2000(2):430-432.
[17] YANG X G;Li C;Yang L H 等.Reduction-nitridation Synthesis of Titanium Nitride Nanocrystals[J].Journal of the American Ceramic Society,2003,86:06-208.
[18] Rak Z S;Czechowski J .Manufacture and Properties of Al2O3-TiN Particle Composites[J].Journal of the European Ceramic Society,1998,18:73-380.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%