本文系统研究了PECVD法沉积μc-Si薄膜中衬低温度、氢气稀释率和射频功率等参数对μc-Si薄膜结构特性的影响.表明:随着衬低温度的增加、氢气稀释率的增大、射频功率的提高,薄膜的晶化率增大.沉积薄膜的晶化率最大可达80%,表面粗糙度大约为30nm.通过对反应过程中的能量变化进行了分析,得到反应为放热反应,且非晶结构对沉积参数比较敏感.
Intrinsic microcrystalline silicon thin films were deposited on the glass substrate at pressure of 133.3Pa by plasma enhanced chemical vapor deposition (PECVD) using SiH4/H2 plasma. The effects of substrate temperature, hydrogen dilution and radio-frequency (RF) power on the structural properties of μc-Si films have been systematically investigated. The largest crystalline volume fraction is approximately 80%, and the surface roughness is about 30nm. With the increase of substrate temperature, the crystalline volume fraction increased and the maximum values of 34.2% at 400℃ was achieved. A larger hydrogen dilution ratio and relatively high RF power would increase the crystalline volume fraction. To explain these experimental phenomena, we calculated the energy changes of the reaction process and found it an exothermic reaction. The amorphous structure is more sensitive to the substrate temperature, silane flow rate and RF power.
参考文献
[1] | Ray S.;Das C.;Mukhopadhyay S.;Saha SC. .Substrate temperature and hydrogen dilution: parameters for amorphous to microcrystalline phase transition in silicon thin films[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2002(1/4):393-400. |
[2] | P. Roca i Cabarrocas;S. Hamma .Microcrystalline silicon growth on a-Si:H: effects of hydrogen[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,1999(1/2):23-26. |
[3] | Hasegawa S.;Inokuma T.;Kurata Y.;Sakata M. .Effects of deposition temperature on polycrystalline silicon films using plasma-enhanced chemical vapor deposition[J].Journal of Applied Physics,1998(1):584-588. |
[4] | B. Park;R. V. R. Murthy;K. Benaissa .Effect of deposition temperature on the structural properties of n↑(+) μc-Si:H films[J].Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films,1998(1/2):902-905. |
[5] | Ray S.;Mukhopadhyay S.;Jana T.;Carius R. .Transition from amorphous to microcrystalline Si : H: effects of substrate temperature and hydrogen dilution[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2002(Pt.2):761-766. |
[6] | Guo Lihui;Lin Rongming .Studies on the formation of microcrystalline silicon with PECVD under low and high working pressure[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2000(1/2):249-254. |
[7] | CRC Handbook of Chemistry and Physics[M].CRC Malabar FL,1978:F224. |
[8] | Glass JA.;Yates JT.;Wovchko EA. .REACTION OF ATOMIC HYDROGEN WITH HYDROGENATED POROUS SILICON - DETECTION OF PRECURSOR TO SILANE FORMATION[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1996(3):325-334. |
[9] | Ohira T.;Noda M.;Ukai O. .Fundamental processes of microcrystalline silicon film growth: a molecular dynamics study[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2000(1/3):216-228. |
[10] | Flewitt AJ.;Milne WI.;Robertson J. .Experimental evidence for an inhomogeneous surface dangling bond limited growth mechanism in a-Si : H[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2000(Pt.A):74-78. |
[11] | Gupta A;Yang H;Parsons G N .An Initio Anaysis of Silyl Precursor Physisorption and Hydrogen Abstraction during Low Temperature Silicon Deposition[J].Surface Science Spectra,2002,496:307-317. |
[12] | Cabarrocas PRI. .Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2000(Pt.A):31-37. |
[13] | Kalache B.;Kosarev AI.;Vanderhaghen R.;Cabarrocas PRI. .Ion bombardment effects on the microcrystalline silicon growth mechanisms and structure[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2002(Pt.1):63-67. |
[14] | Kondo M. .Microcrystalline materials and cells deposited by RF glow discharge[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2003(1/4):543-566. |
[15] | Rabalais JW.;Boyd KJ.;Marton D.;Kulik J.;Zhang Z.;Chu WK.;Albayati AH. .ION-ENERGY EFFECTS IN SILICON ION-BEAM EPITAXY[J].Physical Review.B.Condensed Matter,1996(16):10781-10792. |
[16] | Kondo M.;Guo LH.;Matsuda A.;Fukawa M. .High rate growth of microcrystalline silicon at low temperatures[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2000(Pt.A):84-89. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%