欢迎登录材料期刊网

材料期刊网

高级检索

采用SiH4-C3H8-H2气体反应体系在SiO2/Si复合衬底上进行了SiC薄膜的APCVD生长.实验结果表明,H2表面预处理温度过高或时间过长会导致衬底表面SiO2层熔化再结晶或被腐蚀掉.通过"先硅化再碳化"的工艺方法可以较好地解决SiO2/Si复合衬底上SiC成核困难以及粘附性差的问题,同时还可以有效抑制SiO2中的O原子向SiC生长膜扩散.选择预处理温度和薄膜生长温度为1180℃、H2预处理、SiH4硅化和C3H8碳化时间均为30s的最佳生长条件时,可以得到〈111〉晶向择优生长的多晶3C-SiC外延薄膜,薄膜生长速率约为2.0~2.5nm/min.

SiC thin films were grown on SiO2/Si structures via atmospheric pressure chemical vapor deposition (APCVD) process with SiH4-C3H8-H2 reaction system. Experimental results show that the SiO2 layer on the Si substrates can be melted and reconstructed or removed completely by H2 when the surface pretreatment temperature is too high or the pretreatment time is too long. A special process named "silicification followed by carbonization" was adopted to solve the problems such as SiC grains forming on the SiO2 and poor cohesiveness between the SiC and substrate. Furthermore,this method is effective to prevent O atoms diffusing from SiO2 into SiC epilayer. Polycrystal cubic SiC (3C-SiC) films of the preferential orientation grown along < 111 > direction can be obtained under an optimum process condition such as 1180℃, H2 pretreatment, silicification and carbonization time of all 30s,where the growth rate of SiC films is about 2.0-2.5 nm/min.

参考文献

[1] Tsunenobu Kimoto;Hajime Kosugi;Jim Suda;Yosuke Kanzaki;Hiroyuki Matsunami .Design and Fabrication of RESURF MOSFETs on 4H-SiC(0001), (1120), and 6H-SiC(0001)[J].IEEE Transactions on Electron Devices,2005(1):112-117.
[2] Dwayne Surls;Mark Crawford .Individual and Parallel Behavior of High Current Density, High-Voltage 4h-Silicon Carbide P-I-N Diodes[J].IEEE Transactions on Magnetics,2005(1):330-333.
[3] Zhenxian Liang;Bing Lu;Jacobus Daniel van Wyk;Fred C. Lee .Integrated CoolMOS FET/SiC-Diode Module for High Performance Power Switching[J].IEEE Transactions on Power Electronics,2005(3):679-686.
[4] A. Azzam Yasseen;Chien Hung Wu;Christian A. Zorman;Mehran Mehregany .Fabrication and testing of surface micromachined polycrystalline SiC micromotors[J].IEEE Electron Device Letters,2000(4):164-166.
[5] Wiser R.F.;Juyong Chung;Mehregany M.;Zorman C.A. .Polycrystalline silicon-carbide surface-micromachined vertical resonators-part I: growth study and device fabrication[J].Journal of Microelectromechanical Systems: A Joint IEEE and ASME Publication on Microstructures, Microactuators, Microsensors, and Microsystems,2005(3):567-578.
[6] Wiser R F;Massood T A;Mehran M et al.Polycrystalline Silicon-carbide Surface-micromachined Vertical Resonators-Part Ⅱ:Electrical Testing and Material Property Extraction[J].Journal of Microelectromechanical Systems,2005,14(03):579.
[7] Manabu Ishimaru .Amorphous Structures of Buried Oxide in SiC-on-Insulator[J].Journal of Electronic Materials,2001(12):1489-1492.
[8] Milita S;Tiec Y L;Pernot E et al.X-ray Diffraction Imaging Investigation of Silicon Carbide on Insulator Structures[J].Applied Physical,2002,A75:621.
[9] Jia H J;Yang Y T;Chai C C et al.Epitaxial Growth and Microstructure of Cubic SiC Films on Si Substrates[J].Optical Materials,2003,23(1-2):49.
[10] 贾护军,杨银堂,朱作云,李跃进.硅基β-SiC薄膜外延生长的温度依赖关系研究[J].无机材料学报,2000(01):131-136.
[11] Kee Suk Nahm;Kwang Chul Kim;Kee Young Lim .Growth and Characterization of SiC/SiN_x/Si Structures[J].Journal of the Electrochemical Society,2001(3):G132-G136.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%