欢迎登录材料期刊网

材料期刊网

高级检索

浅成低温热液型金矿床是世界上最为重要的金矿床类型之一,也是当前国际矿床学界研究热点之一.近年来的矿床学研究在浅成低温热液型金矿床的地球化学特征、成矿岩浆背景、成矿机理及成矿模式等方面取得了明显的突破.研究表明:浅成热液金矿床的形成时代主要是中生代白垩世和新生代,其次为晚古生代;成矿流体和成矿物质来源复杂,成矿元素Au是地幔中硫化物氧化释放出的;浅成低温热液型金矿与碱性岩、斑岩金铜矿之间密切伴生;冷却收缩是浅成低温热液型(铜)金矿形成的主要机理,解释了成矿流体的形成、运移和沉淀;等温退缩-蒸气收缩模式和蒸气冷却收缩模式合理地解释了浅成低温热液矿床和斑岩矿床在时间和空间上的共生关系.同时笔者还建议在该类型矿床的研究和找矿工作中应运用先进的测试技术和方法,应用先进的成矿理论.

The epithermal gold deposit is one of the most important types of gold deposit in the world, and also one of the "hot spots" studied by the international deposit geologists. Significant advances have been made in the lat-est decades, including the geochemical characteristics of the deposit, the relationship with intrusive rocks, the metal-logenesis and metallogenic model. The researches indicate that the epithermal gold deposits not only deposit in Creta-ceous and Cenozoic, but also in late Paleozoie. The sources of ore-forming fluids and materials of epithermal gold de-posits are complex, and Au is derived from the sulfides in the mantle by being oxidized. Epithermal gold deposits have genetic relationship with alkaline rocks and porphyrys, and always are associated with porphyry cooper-gold de-posits. Vapor fluid cooling and contraction can be well used to interpret the origin, transportation and precipitation of the ore-forming fluids of these deposits. Epithermal gold deposits and porphyry copper-gold deposits are contacted by vapor contraction and isotherm retraction model and vapor fluid cooling and contraction model, which can reasonablely explain the time and space paragenesis relationship between the two types of deposits. At the same time, this paper suggests that advanced testing techniques, methods and mineralization theories should be applicated in research and exploration of the epithermal gold deposits.

参考文献

[1] Lindgren W.Mineral Deposits[M].New York:McGraw-Hill,1933:1-930.
[2] Bonham H F J.Models for volcanic-hosted epithermal precious metal deposits:A review[A].Hamilton,New Zealand,1986:13-17.
[3] Heald P;Foley N K;Hayba D O .Comparative anatomy of volcanichosted epithermal deposits:acid-sulfate and adularia-sericite types[J].Economic Geology,1987,82(01):1-26.
[4] Corbett G.Epithermal gold for explorationists[J].AIG Journal-Applied Geoscientific Practice and Research in Australia,2002:1-26.
[5] 丰成友,薛春纪,姬金生,张连昌,李华芹.东天山西滩浅成低温热液金矿床地球化学[J].矿床地质,2000(04):322-329.
[6] 江思宏,聂凤军.甘肃南金山金矿床的40Ar-39Ar同位素年龄及其地质意义[J].矿物岩石地球化学通报,2001(04):344-347.
[7] Klein T L;Criss R E .An oxygen isotope study of meteroic-hydrothermal systems at Pilot Mountain and other selected localities,Carolina Slate Belt[J].Economic Geology,1988,83:801-821.
[8] Wood D G;Porter R G;While N C .Geological features of some Paleozoic epithermal gold occurrences in northenstern Queensland[J].Australia Jour Geochem Explor,1990,36:413-443.
[9] 祁进平,陈衍景,李强之.华北克拉通北缘浅成低温热液矿床:时空分布和构造环境[J].矿物岩石,2004(03):82-92.
[10] Hedenquist J W;Arribns A J;Reynolds T J .Evolution of an intrusion-centered hydrothennal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits,Philippines[J].Economic Geology,1998,93(04):373-404.
[11] Heinrich CA;Driesner T;Stefansson A;Seward TM .Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J].Geology,2004(9):761-764.
[12] Heinrich C A .The physical and chemical evolution of low-salinity magmtic fluids at the porphyry to epithennal transition:a thermodynamic study[J].Mineralium Deposita,2005,9:864-889.
[13] ANTHONY E. WILLIAMS-JONES;CHRISTOPH A. HEINRICH .Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits[J].Economic geology and the bulletin of the Society of Economic Geologists,2005(7):1287-1312.
[14] Peter M;Hillary D;Thirlwall M F et al.Small-scale variations of 87Sr-86Sr isotope composition of barite in the Madjaruvo low-sulfidation epithermal system,SE Bulgalia,implications for source of Sr fluxes and pathways of the ore-forming fluids[J].Mineralium Deposita,2002,37(6-7):669-677.
[15] Sillitoe R H .Characteristics and controls of the largest porphyry Copper-gold and epithermal gold deposits in the circum-Pacific region[J].Australian Journal of Earth Sciences,1997,44:373-388.
[16] Sun, WD;Arculus, RJ;Kamenetsky, VS;Binns, RA .Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,2004(7011):975-978.
[17] Kerrich R;Goldfarb R;Groves D.超大型金成矿省的特征、成因及地球动力学背景[A].北京:地震出版社,2001:5-72.
[18] Lane J R;Baker T .Intrusion-related gold system:the present level of understanding[J].Mineralium Deposits,2001,36:477-489.
[19] John R. Holliday;Alan J. Wilson;Philip L. Blevin .Porphyry gold-copper mineralisation in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to shoshonitic magmatism[J].Mineralium deposita,2002(1):100-116.
[20] Karen D. Kelley;Steve Ludington .Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics[J].Mineralium deposita,2002(1):38-60.
[21] 赵振华,熊小林,王强,包志伟,张玉泉,谢应雯,任双奎.我国富碱火成岩及有关的大型-超大型金铜矿床成矿作用[J].中国科学D辑,2002(z1):1-10.
[22] Sillitoe R H .Gold-rich porphyry deposits:Descriptive and genetic models and their role in exploration and discovery[J].Reviews in Economic Geology,2000,13:315-345.
[23] Gammons C H;Willlamsj A E .Chemical mobility of gold in the porphyry-epithermal environment[J].Economic Geology,1997,92(01):45-59.
[24] Kojima S.;, .Some aspects regarding the tectonic setting of high- and low-sulfidation epithermal gold deposits of chile[J].Resource Geology,1999(3):175-181.
[25] Scott A M;Watanabe Y ."Extreme boiling" model for variable salinity of the Hokko low-sulfidation epithermal Au prospect,southwestern Hokkaido,Japan[J].Mineralium Deposits,1998,33(06):568-578.
[26] Carrillo R F J;Morales R S;Boyce A J.High and intermediate sulphidation environment in the same hydrothermal deposit:The example of Au-Cu Palai lslica deposit,Carbonerns (Almeria)[A].Rotterdam:Millpress Science Publishers,2003:445-448.
[27] Audetat A;Gunther D;Heinrich C A .Formation of magamatie-hydrothermal ore deposit:insights with LA-ICP-MS anlysis of fluid inclusion[J].Science,1998,279(27):2091-2094.
[28] Ulrich T;Gunther D;Heinrich CA .Gold concentrations of magmaric brines and the metal budget of porphyry copper deposits[J].Nature,1999,399:676-679.
[29] Rusk BG;Reed MH;Dilles JH;Klemm LM;Heinrich CA .Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT[J].Chemical geology,2004(1/4):173-199.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%