{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用燃烧反应合成的方法制备了多孔Al-Fe基吸声材料.通过扫描电镜及X射线衍射对样品进行了表征,并使用驻波管法测其吸声系数.实验结果表明: Al-Fe吸声材料的孔隙率及吸声系数随着添加造孔剂(NaCl或无水K2CO3)含量的增加而增大;造孔剂为无水NaCl的Al-Fe吸声材料,其吸声性能高于造孔剂为K2CO3的Al-Fe吸声材料;反应后样品中没有Al、Fe单质残留,完全形成了Al-Fe金属间化合物.超声清洗后NaCl、无水K2CO3 均充分溶解.","authors":[{"authorName":"","id":"9c110609-20d7-4a2c-a821-428999f30c14","originalAuthorName":"李昊涵"},{"authorName":"王宙","id":"d6b7da1c-b55c-4a72-97b8-11f377220ad4","originalAuthorName":"王宙"},{"authorName":"室谷贵之","id":"1b171b49-879c-444d-bf08-c26c10128062","originalAuthorName":"室谷贵之"},{"authorName":"赵明华","id":"9d06a4e5-0441-4aff-af23-d126bce2216c","originalAuthorName":"赵明华"},{"authorName":"付传起","id":"5b3b8301-2765-4e16-baa4-5d3a75be22a3","originalAuthorName":"付传起"},{"authorName":"何湘","id":"dcf66b9b-cfc7-4909-980f-46ddca07c8ba","originalAuthorName":"何湘"},{"authorName":"李斌","id":"207ab195-f1b2-464c-b08d-7d0aab21388c","originalAuthorName":"李斌"}],"doi":"","fpage":"146","id":"b23cebc7-9f3f-4630-9ce1-55834f65202c","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"aff86ee8-8fa7-42bb-9870-29eb15c0ee37","keyword":"燃烧反应合成","originalKeyword":"燃烧反应合成"},{"id":"47dcb853-2af6-413a-b777-d4dbfc0cec2b","keyword":"Al-Fe基吸声材料","originalKeyword":"Al-Fe基吸声材料"},{"id":"e672409f-1707-4b20-9f21-aff9d629014e","keyword":"吸声系数","originalKeyword":"吸声系数"}],"language":"zh","publisherId":"xyjsclygc2010z1035","title":"燃烧反应合成Al-Fe基吸声材料","volume":"39","year":"2010"},{"abstractinfo":"采用燃烧反应合成方法,在球墨铸铁表面制备Ni-Al-SiC金属间化合物复合涂层,通过加入SiC粒子来改善Ni-Al系金属间化合物的摩擦磨损性能.试验结果表明:随着载荷的提高,磨损量增加,摩擦因数减小;随着SiC粒子含量的增加,硬度增加,磨损量降低;在燃烧反应的过程中,随着烧结压强的增加,硬度有明显提高.由此得出结论:SiC粒子的加入,明显改善了Ni-Al系金属间化合物的摩擦磨损性能,并且提高了材料的硬度.","authors":[{"authorName":"王宙","id":"9e48304e-63b1-4432-a5c1-0ce189a58339","originalAuthorName":"王宙"},{"authorName":"","id":"0fcc23a2-ccd7-4d6a-a217-95336b22eebd","originalAuthorName":"李昊涵"},{"authorName":"室谷贵之","id":"45c667d7-b6d3-4c6d-964a-1eb21a29d19f","originalAuthorName":"室谷贵之"},{"authorName":"赵明华","id":"b49d7dc2-b8f8-44d4-b602-9c39d09faeed","originalAuthorName":"赵明华"},{"authorName":"付传起","id":"c6418faa-e7e7-4059-8d51-43c5b4f14a3a","originalAuthorName":"付传起"}],"doi":"10.3969/j.issn.1001-3660.2009.01.017","fpage":"45","id":"2e80bfbf-b102-418b-b550-b7743e64db68","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"be495fdf-61b1-414c-a74e-1bc89c17f784","keyword":"燃烧反应合成","originalKeyword":"燃烧反应合成"},{"id":"3ba5be77-7775-4d77-84b8-274af7695780","keyword":"Ni-Al-SiC","originalKeyword":"Ni-Al-SiC"},{"id":"c828c050-b06a-4837-833c-95b6976109c1","keyword":"复合涂层","originalKeyword":"复合涂层"},{"id":"40b267dd-c07e-4df5-b7c1-2a1f2a66f429","keyword":"摩擦因数","originalKeyword":"摩擦因数"},{"id":"502afabc-7355-4ec2-a778-a2653727e6a8","keyword":"磨损量","originalKeyword":"磨损量"},{"id":"95f95672-5465-4750-8916-a824314eaf0e","keyword":"金属间化合物","originalKeyword":"金属间化合物"}],"language":"zh","publisherId":"bmjs200901017","title":"燃烧反应合成Ni-Al-SiC摩擦磨损性能研究","volume":"38","year":"2009"},{"abstractinfo":"研究了连铸结晶器用Cr-Zr-Cu合金高温抗氧化性能的变化规律,通过氧化动力学曲线的测定,确定了该合金抗氧化级别的温度区间.运用金相及X射线衍射等分析手段将自行研制的Cr-Zr-Cu合金与进口同类材料的氧化产物结构进行了对比分析.阐述了Cr、Zr、Mg元素提高合金抗氧化性能作用的机理.结果证明:自行研制的Cr-Zr-Cu合金具有更好的高温抗氧化性能.","authors":[{"authorName":"隋晓红","id":"14a64053-0606-49b4-9276-92f9a64228b1","originalAuthorName":"隋晓红"},{"authorName":"","id":"b47ecfa8-0635-4619-ae0a-93a426b398ba","originalAuthorName":"李昊涵"}],"doi":"10.3969/j.issn.1001-0777.2007.05.007","fpage":"24","id":"2f683479-8368-43c0-ae8b-1288ec55f66d","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"523ac1b8-36d3-4c95-8125-e5b4b70f6e9f","keyword":"结晶器","originalKeyword":"结晶器"},{"id":"7c9c06de-5006-4f24-9493-bf156b7c2758","keyword":"合金","originalKeyword":"合金"},{"id":"ed2e3d7c-268e-4e7b-af45-081f1e08f971","keyword":"抗氧化性能","originalKeyword":"抗氧化性能"},{"id":"62fe9e90-a4ed-459c-baff-5f5782f7bb11","keyword":"速率","originalKeyword":"速率"},{"id":"9486b2de-9ea2-4aee-9221-7dc458d23d06","keyword":"动力学曲线","originalKeyword":"动力学曲线"}],"language":"zh","publisherId":"wlcs200705007","title":"连铸结晶器用Cr-Zr-Cu合金抗氧化性能分析","volume":"25","year":"2007"},{"abstractinfo":"使用以Al粉、Cu粉混合,添加NaCl或无水K_2CO_3的混合配比,并采用燃烧反应合成的方法制备了规则的、具有良好吸声性能的开孔Al-Cu吸声材料.采用扫面电镜及X射线衍射对样品进行表征,并使用驻波管法测其吸声系数.实验结果表明:随着NaCl或无水K_2CO_3含量的增加, Al-Cu吸声材料的孔隙率及吸声系数随之增加;造孔剂为无水K_2CO_3的Al-Cu吸声材料,其吸声性能高于造孔剂为NaCl的;在反应过程中,没有Al、Cu单质残留,完全形成了Al-Cu金属间化合物.超声清洗后NaCl、无水K_2CO_3 均充分溶解.","authors":[{"authorName":"赵明华","id":"568edf29-36db-4ff5-965b-a43a73507dd9","originalAuthorName":"赵明华"},{"authorName":"王宙","id":"0e494527-c45d-4212-8a6d-dd746e0cd8c7","originalAuthorName":"王宙"},{"authorName":"室谷贵之","id":"3e2e3990-abb6-4fa5-9869-4bd45d059ff8","originalAuthorName":"室谷贵之"},{"authorName":"","id":"a11277ba-2a94-4400-850a-511e93b51a03","originalAuthorName":"李昊涵"},{"authorName":"付传起","id":"5d3d728f-281c-4bf0-a508-b876ca1b2c13","originalAuthorName":"付传起"},{"authorName":"李斌","id":"32790bd8-82d7-4d60-b364-b306d2c61498","originalAuthorName":"李斌"}],"doi":"","fpage":"2041","id":"4760ade1-614e-4659-9276-0089e3dcd2a5","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"cd7ea363-22ee-4557-9b1a-7c20c601954d","keyword":"燃烧反应合成","originalKeyword":"燃烧反应合成"},{"id":"ed4d21c0-7343-4584-ae11-432518678932","keyword":"Al-Cu基吸声材料","originalKeyword":"Al-Cu基吸声材料"},{"id":"7a18a3ac-ece0-415a-96d4-59403dca48dd","keyword":"吸声系数","originalKeyword":"吸声系数"}],"language":"zh","publisherId":"gncl200912028","title":"燃烧反应合成Al-Cu基吸声材料","volume":"40","year":"2009"},{"abstractinfo":"叙述了不同硅含量的低碳钢连铸坯凝固组织特征及宏观组织参数的定量评定方法.通过对连铸坯凝固组织比例系数和枝晶间距的测定以及对连铸坯低倍组织缺陷的统计分析,找出了凝同组织形态与铸坯成分中硅含量的关系;指出在一定限度内,随硅含量增加,铸坯的一次晶间距加宽,各类低倍组织缺陷大大减少.","authors":[{"authorName":"隋晓红","id":"4cc4b770-20df-41ad-8682-a5e147219baa","originalAuthorName":"隋晓红"},{"authorName":"谢广群","id":"4e411948-17e1-42d2-9459-e4a8cbcff9eb","originalAuthorName":"谢广群"},{"authorName":"赵宝纯","id":"0ef45033-d676-4ced-9c4a-4647eed25869","originalAuthorName":"赵宝纯"},{"authorName":"","id":"f7211a4b-2baa-4808-a6f7-bbb60209c701","originalAuthorName":"李昊涵"}],"doi":"","fpage":"16","id":"809a898c-1a0d-4b5a-89a9-1c7dc7afc786","issue":"6","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"543a095c-ad2e-4eec-abc8-159f05939464","keyword":"枝晶","originalKeyword":"枝晶"},{"id":"63c0489c-9b8d-4836-a932-88fba890d77a","keyword":"凝固组织","originalKeyword":"凝固组织"},{"id":"cde5ed0d-c4b5-4f49-bdee-b3aa1cc69273","keyword":"缺陷","originalKeyword":"缺陷"}],"language":"zh","publisherId":"wlcs200806005","title":"硅含量对低碳钢连铸坯凝固组织的影响","volume":"26","year":"2008"},{"abstractinfo":"对含Si低碳钢连铸坯发生的横向断裂缺陷进行了金相、扫描电镜检验分析及加热工艺模拟试验;对铸坯从钢水凝固到轧前加热断裂的热历程中所受外力及其与裂纹形成的关系进行了分析.检验分析结果表明:引起铸坯横向断裂的主要原因是浇注时钢水过热度高,凝固组织冷却慢,晶粒发生了严重的粗化,柱状晶间界的强度大大降低,使铸坯在弯曲矫直过程中形成内部裂纹,当再加热时,其热应力使内部裂纹进一步扩展而开裂.所以,控制好铸坯的浇注温度,提高铸坯中心等轴晶率,是防止含硅低碳钢连铸坯横向断裂的有效途径.","authors":[{"authorName":"隋晓红","id":"fc63b4e9-0eee-4ff8-b3bb-fae167718499","originalAuthorName":"隋晓红"},{"authorName":"平","id":"5d447d37-0e62-4b01-814b-d3281c9253b1","originalAuthorName":"李平"},{"authorName":"谢广群","id":"5aff5669-f013-4f13-8ceb-e2730c26e7d1","originalAuthorName":"谢广群"},{"authorName":"","id":"ffef3117-879b-4116-b703-6959a92f374b","originalAuthorName":"李昊涵"}],"doi":"","fpage":"48","id":"9de676b0-d25a-4d59-98a2-6529acf3d743","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"68c43509-9003-49a5-8da7-eb8930dec157","keyword":"连铸坯","originalKeyword":"连铸坯"},{"id":"2f22f5eb-6e69-4a04-b5d0-62cb2dd4ff9e","keyword":"横向断裂","originalKeyword":"横向断裂"},{"id":"16e89e74-155a-4799-90b6-8fa73e96bd17","keyword":"柱状晶","originalKeyword":"柱状晶"},{"id":"6b20690f-1c69-4e5b-a283-0fea508bd596","keyword":"枝晶","originalKeyword":"枝晶"}],"language":"zh","publisherId":"gt200908011","title":"连铸坯横向断裂影响因素的分析","volume":"44","year":"2009"},{"abstractinfo":"叙述了不同硅含量的低碳钢连铸坯凝固组织特征及宏观组织参数的定量评定方法。通过对连铸坯凝固组织比例系数和枝晶间距的测定以及对连铸坯低倍组织缺陷的统计分析,找出了凝固组织形态与铸坯成分中硅含量的关系;指出在一定限度内,随硅含量增加,铸坯的一次晶间距加宽,各类低倍组织缺陷大大减少。","authors":[{"authorName":"隋晓红","id":"f37a8e7b-feea-461e-a40c-ab99db919bf8","originalAuthorName":"隋晓红"},{"authorName":"谢广群","id":"7f7aa18e-034a-4fef-8556-9731ac70b6ae","originalAuthorName":"谢广群"},{"authorName":"赵宝纯","id":"e7f42542-1790-4035-b90b-68c821d23d64","originalAuthorName":"赵宝纯"},{"authorName":"","id":"f7987338-f2c0-4e00-831b-e85c9fb2471a","originalAuthorName":"李昊涵"}],"categoryName":"|","doi":"","fpage":"16","id":"a9ebe69e-e2a9-4504-9595-6d78dafbbb06","issue":"6","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"eddf9aa0-accd-4dd1-9bf0-3db308cadb43","keyword":"枝晶","originalKeyword":"枝晶"},{"id":"6434aeea-b0a3-4b6e-bb76-449438c0c5b6","keyword":"solidified structure","originalKeyword":"solidified structure"},{"id":"cfd62a8c-6d0b-4a30-a538-19e4e0651bde","keyword":"defect","originalKeyword":"defect"}],"language":"zh","publisherId":"1001-0777_2008_6_2","title":"硅含量对低碳钢连铸坯凝固组织的影响","volume":"26","year":"2008"},{"abstractinfo":"对含Si低碳钢连铸坯发生的横向断裂缺陷进行了金相、扫描电镜检验分析及加热工艺模拟试验;对铸坯从钢水凝固到轧前加热断裂的热历程中所受外力及其与裂纹形成的关系进行了分析。检验分析结果表明:引起铸坯横向断裂的主要原因是浇注时钢水过热度高,凝固组织冷却慢,晶粒发生了严重的粗化,柱状晶间界的强度大大降低,使铸坯在弯曲矫直过程中形成内部裂纹,当再加热时,其热应力使内部裂纹进一步扩展而开裂。所以,控制好铸坯的浇注温度,提高铸坯中心等轴晶率,是防止含硅低碳钢连铸坯横向断裂的有效途径。","authors":[{"authorName":"隋晓红","id":"dc8c61ce-efaf-49e6-9ec5-a0af21642dbc","originalAuthorName":"隋晓红"},{"authorName":"平","id":"99864101-c677-417a-a92b-c731b68d27cf","originalAuthorName":"李平"},{"authorName":"谢广群","id":"677942cd-0998-413b-82a3-da8e1da44ce8","originalAuthorName":"谢广群"},{"authorName":"","id":"54aee053-5fc1-42c4-a470-e4422b1765c5","originalAuthorName":"李昊涵"}],"categoryName":"|","doi":"","fpage":"48","id":"bf21c776-05cf-4338-b936-6952eea992d8","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"b5450b82-9ab9-444b-bf74-d2a24a2430fd","keyword":"连铸坯;横向断裂;柱状晶;枝晶","originalKeyword":"连铸坯;横向断裂;柱状晶;枝晶"}],"language":"zh","publisherId":"0449-749X_2009_8_22","title":"连铸坯横向断裂影响因素的分析","volume":"44","year":"2009"},{"abstractinfo":"本文对内涵高低压三级涡轮、涡轮出口支板通道、外通道以及内外混合段流动进行联立计算,给出了流场结构和流动分析.结果表明:联立数值模拟十分必要,是考察多部件匹配特性的有效手段.数值模拟的结果还表明:涡轮与支板的匹配不太理想,但气体通过支板后,仍能够接近轴向出气;混合段内外流动掺混作用并不强烈,由于掺混带来的气动损失并不严重.","authors":[{"authorName":"杨琳","id":"053d1cc1-4ea1-4e31-b50c-f6c3d55e9be9","originalAuthorName":"杨琳"},{"authorName":"刘火星","id":"c65c1356-937b-41b2-8c0d-411d724429d2","originalAuthorName":"刘火星"},{"authorName":"邹正平","id":"c9782795-0264-41b5-95c7-b7c73613c89b","originalAuthorName":"邹正平"},{"authorName":"维","id":"ceddb533-21c1-49e8-adb7-eab4de3c1c4c","originalAuthorName":"李维"}],"doi":"","fpage":"39","id":"b28ac5ba-6854-49c4-b4e8-a17aa03a1c3a","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"512b4656-e338-42e0-8905-ec566ab16599","keyword":"内外","originalKeyword":"内外涵"},{"id":"3697d4b9-2a43-4e2e-94ec-70ed7258db35","keyword":"涡轮","originalKeyword":"涡轮"},{"id":"e725fcbe-44fa-4f04-8dac-75268e6fa941","keyword":"支板","originalKeyword":"支板"},{"id":"bc177a4f-5313-4f07-8770-b79a9745901f","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"50995557-d344-46b2-b768-4d324d5de3a5","keyword":"匹配","originalKeyword":"匹配"}],"language":"zh","publisherId":"gcrwlxb200601012","title":"涡轮内外联立数值模拟","volume":"27","year":"2006"},{"abstractinfo":"结合河北承德某工程实际,对工程中涵洞选用FRPM管的标段进行车辆静载试验,以研究其受力状况,为实际工程做指导.FRPM管的受力状况与不同填土高度及荷载作用密切相关,为此依据现场试验所得管道受力特征,在平面应变条件下,采用ABAQUS建立的管-土相互作用模型对现场试验进行数值模拟,利用数值分析的方法,以减少传统试验在人力、物力上的耗费.研究结果表明,在最小填土0.5m,不同车辆荷载作用下,管最大变形为1.3mm,管受力较好;试验与模拟结果一致性较好,验证了所建模型的正确性.","authors":[{"authorName":"魏连雨","id":"acd87c56-5597-4be0-ace0-e91e22424b39","originalAuthorName":"魏连雨"},{"authorName":"张国盘","id":"05b4395d-f9ea-4a26-ac42-dda7ee4004fb","originalAuthorName":"张国盘"},{"authorName":"张济源","id":"b149d6dc-f472-4017-b2b0-87783e559aa0","originalAuthorName":"张济源"},{"authorName":"王金伟","id":"50474059-df75-4084-9dde-984440ae7bed","originalAuthorName":"王金伟"},{"authorName":"陈兆南","id":"3feef878-ffd3-4664-b659-148b11bfb01e","originalAuthorName":"陈兆南"}],"doi":"","fpage":"73","id":"aa019488-7d9e-4768-a7f9-9e758e4516de","issue":"8","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"0fbd2d54-12bb-4403-a2bb-b7422b831404","keyword":"FRPM管","originalKeyword":"FRPM管"},{"id":"e14da0b2-4d60-4e2b-8d62-d631d7cefabf","keyword":"静载试验","originalKeyword":"静载试验"},{"id":"a5f9fb9e-afe6-4722-a0b7-d75a432deee6","keyword":"力学特性","originalKeyword":"力学特性"},{"id":"fd8eef33-ee04-4e4f-bb32-c45f192a2e1e","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"blgfhcl201608013","title":"FRPM管力学特性试验与数值模拟研究","volume":"","year":"2016"}],"totalpage":13,"totalrecord":123}