欢迎登录材料期刊网

材料期刊网

高级检索

气体软氮化是以渗氮为主的低温氮碳共渗,钢表面渗入氮原子的同时,还有少量的碳原子渗入而形成极其细小的碳化物,碳化物作为媒介可促进渗氮.由于该工艺处理温度低,时间短,所以工件变形小,脆性低.综述了以提高表面硬度、抑制表层脆性、高温短时等为主的气体软氮化工艺的发展状况,分别从稀土催渗、多元共渗、周期循环渗氮、可控气氛渗氮和奥氏体软氮化等5个方面阐述了气体软氮化渗层性能的影响机理和研究现状,并介绍了35钢增压喷丸表面纳米化对气体软氮化过程的影响,展望了表面纳米化用于气体软氮化的发展前景.

Gas soft-nitriding is low-temperature nitrocarburising which is mainly based on nitriding. While the nitrogen atoms infiltrate into the steel, a small number of carbon atoms infiltrate as well to form some extremely small carbides, which act as the medium for nitriding. As the processing temperature is low and the time is short, so the deformation of the steel would become small, brittle could also be reduced. The development of gas soft nitriding, which could improve the surface hardness, inhibit the surface brittle and possess the properity of high-temperature and short-time, was reviewed; The mechanism and reasearch of the performance of gas soft-nitrided layer were described from five aspects respectively as followes: rare-earth catalyzing infiltration, multicomponent co-cementation, cyclic nitriding, controlled atmosphere nitriding and austenitic soft-nitriding. The influences of nano-crystallization by surface strengthens pressure shot penning on gas soft-nitriding of 35 steel were introduced; Development perspectives of the surface nanocrystallization for soft nitriding process were forecasted.

参考文献

[1] Bell T;Kinali M;Munsterman G.Physical metallurgy aspects of the austenitic nitrocarburising process[J].Heat Treatment of Metals,1987(02):47-51.
[2] 胡德昌.稀土元素在气体碳氮共渗中的作用研究[J].宇航材料工艺,1992(01):25-30.
[3] 陈文华;秦展琰 .稀土对45钢软氮化性能的影响[J].南京航空航天大学学报,1998,30(02):215-219.
[4] 丁定远.稀土元素对软氮化过程催渗、组织和性能的影响及生产应用[J].稀土,1990(06):27.
[5] 尹付成,洪振声.稀土对模具钢低温氮碳共渗层性能的影响[J].机械工程材料,2000(01):17-19.
[6] 石淑琴,李文英,蒋敦斌,陈光.稀土合金化氮碳共渗工艺的研究[J].天津师范大学学报(自然科学版),2002(02):56-59.
[7] 中国机械工程学会热处理学会.热处理手册[M].北京:机械工业出版社,2001
[8] 河田一喜;杨如生.氮基软氮化法[J].国外金属热处理,1999(05):19-24.
[9] 李泉华.高速钢圆拉刀氮碳硫氧共渗[J].金属热处理,1997(10):11-13.
[10] 何宁.多元共渗处理提高高速钢刀具在加工钛合金的切削性能[J].航空学报,1992(12):686.
[11] 周上祺 .快速深层渗氮处理工艺[P].中国专利:ZL911007261.6,1996-03-02.
[12] 赖福贵.材料、装炉量和氨分解率对气体渗氮效果的影响[J].金属热处理,1999(01):43.
[13] Bell T.Source Book on Nitriding[M].OH:ASM Metals Park,1977
[14] 胡明娟;潘健生;毛立忠 等.高速钢刀具可控渗氮[J].金属热处理学报,1998,19(01):31-36.
[15] 赵茂程,潘一凡,陆荣鉴.气体渗氮中的氮势控制[J].热加工工艺,2005(05):31-32.
[16] 谢黎雄.氮势控制技术及其应用[J].金属热处理,2002(05):25-27.
[17] Paul Stratton .SURFACE ENGINEERING with carbon and nitrogen[J].Materials World,1995(11):530-533.
[18] 潘健生;朱文琴;胡明娟 等.奥氏体氮碳共渗渗层组织的金相观察[J].材料热处理学报,1991,12(04):9-16.
[19] 程晓敏,陶应龙,吴兴文.奥氏体氮碳共渗层的相组成与氮浓度分布[J].金属热处理,2003(07):28-31.
[20] 杨学斌.奥氏体氮碳共渗层中的Fe-N-C贝氏体[J].热加工工艺,1995(06):21.
[21] 周上祺;范秋;林任勤.快速深层渗氮工艺的设计[J].金属热处理,1998(03):2-4.
[22] 谢飞;马宝钿;何家文 .钢的快速深层渗氮研究进展[J].材料导报,1998,12(05):19-22.
[23] 陈玉华,吴晓春,汪宏斌.喷丸对H13钢等离子渗氮处理的影响[J].金属热处理,2008(06):47-49.
[24] 葛利玲,路彩虹,井晓天,卢正欣,刘忠良.40Cr钢表面纳米化组织与性能的研究[J].表面技术,2008(02):11-13.
[25] K. Lu;J. Lu .Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):38-45.
[26] 冯淦,石连捷,吕坚,卢柯.低碳钢超声喷丸表面纳米化的研究[J].金属学报,2000(03):300-303.
[27] 卑多慧,吕坚,顾剑锋,卢柯,潘健生.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报,2002(01):19-24.
[28] 佟伟平 .纯Fe和38CrMoAl钢的表面纳米化及其低温氮化行为的研究[D].沈阳:中国科学院金属研究所,2003.
[29] 陈磊,揭晓华,于能,郑向新.35钢表面增压喷丸纳米化对气体软氮化的影响[J].热加工工艺,2009(22):130-132.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%