采用数值模拟方法研究了等离子喷涂金属和陶瓷颗粒的熔化过程以及熔化状态颗粒在基体表面(光滑、粗糙)上的冲击平化变形过程.研究结果给出了保证金属-陶瓷涂层质量的喷涂距离的确定方法以及金属与陶瓷颗粒在基体表面上的冲击平化变形量.
参考文献
[1] | S.V.Joshi;R.Sivakumar .Prediction of in-flight particle parameters during plasma spraying of ceramic powders[J].Materials Science and Technology,1992,8:481-488. |
[2] | Gerardo trapaga;Julian Szekely .Mathematical modeling of the isothermal impingement of liquid droplets in spraying processes[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1991,22B:901-914. |
[3] | A.H.King;J.M.Perram .Applications of computer simulation techniques to problems encountered in conventional plasma spraying[J].Materials Science and Engineering,1985,70(1-2):211-216. |
[4] | Robert C;Denoirjean A;Vardelle A.Nucleation and phase selection in plasma-spraying alumina:modeling and experiment[A].Nice,France,1998-05-25:407-412. |
[5] | V.V.Sobolev;J.M.Guilemany .Flattening thermally sprayed particles[J].Materials Letters,1995,22:209-213. |
[6] | H.Fukanuma;C.C.Berndt.Mathematical modeling of flattening process on rough surfaces in thermal spray. Thermal Spray: Practical solutions for engineering problems[M].Published by ASM international,Materials Park,Ohio-USA,1996:647-656. |
[7] | 何光渝.FORTRAN77算法手册[M].北京:科学出版社,1993 |
[8] | Yang Y-M;Coddet C;Imbert M.,HVOF.超音速束流中颗粒运动的模拟和数学模型[A].:209-215. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%