{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用高速火焰喷涂技术以及等离子喷涂技术制备了Fe-Ni-B涂层.利用扫描电子显微镜(SEM)、X射线荧光光谱仪(EDX)分析了粉末以及涂层的微观结构、涂层到基体的成分分布.利用X射线衍射(XRD)分析了喷涂态的涂层物相.并对涂层的结合强度及抗热震性能进行了试验研究.研究结果认为:等离子喷涂层组织更为致密,但其热喷涂涂层存在的层状结构也更加明显.熔融液滴在涂层表面的平铺效果都比较好.Fe、Ni元素的分布从涂层到基体基本成均匀分布,避免了局部元素偏析所造成的应力集中.热震后,等离子喷涂涂层中的裂纹分布细小且无规律.高速火焰喷涂涂层裂纹主要集中在涂层与基体结合部位.根据材料抗热震性能的能量理论和弹性理论,等离子喷涂涂层的抗热震能力更强.并且涂层的断裂失效主要产生在结合部位.","authors":[{"authorName":"陈辉","id":"c25117e9-49fc-4be5-8773-13b52040ae93","originalAuthorName":"陈辉"},{"authorName":"苟国庆","id":"0b20eb46-b4f9-4c16-a07d-112affbd94d0","originalAuthorName":"苟国庆"},{"authorName":"涂铭旌","id":"5de398e2-7c06-4877-a0f9-1655eb9d79cf","originalAuthorName":"涂铭旌"}],"doi":"","fpage":"145","id":"df213213-6ef8-4f49-a1de-d6aefa5b2969","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"46ef833a-99a6-4714-a2c0-5106f6ad4768","keyword":"高速火焰喷涂","originalKeyword":"高速火焰喷涂"},{"id":"bda25f08-700f-463d-8a01-bdfacbfa9826","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"a3c7ad9d-ac52-4726-8598-c5036ac74692","keyword":"Fe-Ni-B","originalKeyword":"Fe-Ni-B"},{"id":"379dfd4a-5c20-4968-855d-f2a201d2fbbf","keyword":"能量理论","originalKeyword":"能量理论"},{"id":"11a4d367-2e83-425c-8465-475e3b397d42","keyword":"弹性理论","originalKeyword":"弹性理论"}],"language":"zh","publisherId":"clkxygy201001032","title":"喷涂工艺对Fe-Ni-B喷涂涂层组织性能的影响","volume":"18","year":"2010"},{"abstractinfo":"流动稳定性及湍流转捩是流体力学和流体机械学科的重要研究课题.本文运用能量梯度理论,对180°矩形截面弯管内的流动不稳定特性进行了研究.基本流动为层流,利用三维数值模拟的方法,得出了不同Re下的能量梯度函数K的分布.通过与相同几何和流动条件下的实验结果比较,发现K值最大的位置最先发生流动失稳,进而形成涡流.随Re的增加,流动逐渐转捩为湍流.计算所得到的能量梯度函数K的分布特性与实验得到的流动失稳区域基本一致.","authors":[{"authorName":"窦华书","id":"a6f1428d-973f-4d80-90bf-b4bf27864609","originalAuthorName":"窦华书"},{"authorName":"肖美娜","id":"6350c02b-8eb1-46f9-8b89-c0504d28da82","originalAuthorName":"肖美娜"}],"doi":"","fpage":"658","id":"3dd81518-8a62-420d-85a2-be57a1a7b8e0","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"750f8cd3-d8f4-4469-a580-cb991036fb6b","keyword":"弯曲管道","originalKeyword":"弯曲管道"},{"id":"3b85fdfe-3933-41bd-95fa-120093c34ddf","keyword":"失稳","originalKeyword":"失稳"},{"id":"af8cc695-b443-4809-9125-f3e7a40befbc","keyword":"能量梯度","originalKeyword":"能量梯度"},{"id":"ab5ddc31-d25b-40dd-97f4-165f94972362","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201304017","title":"用能量梯度理论研究180°弯管内流动失稳","volume":"34","year":"2013"},{"abstractinfo":"电喷雾离子源(electrospray ionization,ESI)不仅可以用于小分子的检测,也能够用于蛋白质、多肽等大分子的研究。本文通过对离子化过程的系统分析,提出了基于能量最低原理的离子化过程能量转移理论。样品分子在由液相转移到气相形成离子化气体的过程中受到静电力、分子间的范德华力等多种力的作用。样品的离子化是多种力共同作用的结果,在不同的离子化阶段,不同形式的力的作用也不尽相同。电荷在样品表面蒸发和多电荷离子的形成之间存在竞争。对不同结构的分子,分子形态、构象改变导致的两相间转移 Gibbs 自由能变化不同,可能导致离子蒸发、大分子形成多电荷离子、产生链弹射等行为。离子化能量转移理论不仅能够对已有的3种理论加以简化统一,也可以说明溶剂、电解质离子等在离子化过程中的作用,为优化不同结构与形态样品的质谱检测、了解离子化的真实过程提供了一种可能的依据。","authors":[{"authorName":"张维冰","id":"400d0763-41bc-45cf-bd8a-cb95fb51a4ae","originalAuthorName":"张维冰"},{"authorName":"高方园","id":"2c5e676d-9fbc-4da7-9978-d209f5a2862a","originalAuthorName":"高方园"},{"authorName":"关亚风","id":"c28b89e0-7a6a-4823-8f93-da1cc5e1a207","originalAuthorName":"关亚风"},{"authorName":"张玉奎","id":"cfe8a563-3bd8-43d5-bc83-0698f0715831","originalAuthorName":"张玉奎"}],"doi":"10.3724/SP.J.1123.2013.11001","fpage":"395","id":"91e264fd-2c7c-491a-923b-8ad271498f7c","issue":"4","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"edcd0eae-c014-4fe0-ae57-b7e5a7e6ae53","keyword":"电喷雾离子源","originalKeyword":"电喷雾离子源"},{"id":"e738c634-f3df-492f-824a-8e4ed774e487","keyword":"电荷转移能","originalKeyword":"电荷转移能"},{"id":"8e47fb32-8ba5-48fc-b57a-5e95871b78de","keyword":"能量最低原理","originalKeyword":"能量最低原理"},{"id":"63c928c1-d084-4354-a6f1-bc49ebafc6f6","keyword":"样品离子化","originalKeyword":"样品离子化"}],"language":"zh","publisherId":"sp201404012","title":"电喷雾离子源中样品离子化能量转移理论的初探","volume":"","year":"2014"},{"abstractinfo":"本文利用定常的三维Navier-Stokes方程和RNGk-ε湍流模型,对双吸式离心通风机的内部三维流动进行了数值模拟,并应用能量理论处理不同工况下的全流场流动参数,获得了能量梯度函数K的分布,并且对不同流道内压力面和吸力面上的静压分布进行了分析.研究表明,双吸式离心通风机叶轮出口区域是容易激发流动不稳定的关键位置;在叶道子午面上,沿轴向越接近轮盖处,流动越容易出现不稳定;同一工况下沿叶轮旋转方向接近挡流板的流道内的流动相较于其它流道内流动更容易出现失稳.","authors":[{"authorName":"张滨炜","id":"b383b384-56b4-429f-b709-4cc1181ce091","originalAuthorName":"张滨炜"},{"authorName":"窦华书","id":"64831393-e48a-402d-9c45-500f0dc98b68","originalAuthorName":"窦华书"},{"authorName":"魏义坤","id":"b3c78f05-3472-40c6-a99b-23eea542f14c","originalAuthorName":"魏义坤"},{"authorName":"陈永宁","id":"b60c42f3-b13e-44a4-bf76-d9abbec11534","originalAuthorName":"陈永宁"},{"authorName":"何海江","id":"7dd47e73-2748-4a68-a526-f250502dfc67","originalAuthorName":"何海江"},{"authorName":"叶信学","id":"ba579ba2-eda5-4e19-86ce-9450a1422e71","originalAuthorName":"叶信学"}],"doi":"","fpage":"1917","id":"d83e3511-d901-486b-816f-d2658adc27cc","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ad0893a7-4f08-4b9e-85cd-87480acb0ba4","keyword":"离心通风机","originalKeyword":"离心通风机"},{"id":"9a9e2dd3-7619-4f8f-90a9-417656191ab1","keyword":"不稳定性","originalKeyword":"不稳定性"},{"id":"deb81143-3118-4dec-bc65-a2e2889f42e9","keyword":"能量梯度","originalKeyword":"能量梯度"},{"id":"e3184e0e-79d7-45a5-816d-091c947d51e1","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201509015","title":"基于能量梯度理论双吸式离心通风机失稳研究","volume":"36","year":"2015"},{"abstractinfo":"本文采用基于密度泛函理论的第一性原理计算方法,系统研究了Mg(OH)2晶体的几何构型、能量及微观电子结构.结果显示:Mg(OH)2具有三角系晶体结构,其理论计算的晶胞参数包括晶格常数与原子坐标等均与实验值吻合;分解反应热的计算结果表明Mg(OH)2具有较高的热稳定性及良好的阻燃效果;电子结构分析表明Mg(OH)2晶体呈现绝缘体性质,在其晶体内部,Mg与OH间呈离子键作用,而O-H间则呈混合的共价-离子键作用,且O(2s) (2p)与H(s)轨道电子间的成键作用决定了Mg(OH)2晶体的稳定性.","authors":[{"authorName":"黄雅妮","id":"2c70c8c7-b4e6-4e98-8e06-e354190dedda","originalAuthorName":"黄雅妮"}],"doi":"","fpage":"1653","id":"dad5da6a-551f-4074-8d29-5f96c91e2046","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"0a5ee83a-6028-439b-92a3-fcac0f46ee76","keyword":"Mg(OH)2","originalKeyword":"Mg(OH)2"},{"id":"fc2137c5-8a30-4d8a-a6f1-95fd308acc2c","keyword":"第一性原理","originalKeyword":"第一性原理"},{"id":"e8e1670d-fcab-4bd2-9f9c-f537b14e5b76","keyword":"分解反应热","originalKeyword":"分解反应热"},{"id":"1923c2e4-81b6-4319-a62e-8b012d7c18d2","keyword":"电子结构","originalKeyword":"电子结构"}],"language":"zh","publisherId":"rgjtxb98201206033","title":"阻燃剂Mg(OH)2的晶体构型、能量及电子结构的理论研究","volume":"41","year":"2012"},{"abstractinfo":"运用Gaussian 98程序包中的AM1方法,通过对间二甲苯系列化合物设定的8种热裂解过程的反应能量、生成自由基的轨道能级、自由基的相对稳定性的量子化学理论计算,研究了间二甲苯系列化合物的热反应活性及热裂解机理.计算结果表明:(1)各反应物的主反应路径均是苯环上甲基CH键首先断裂.该结论与实验结果一致;(2)各反应物之间的热反应活性由大到小顺序为:C8H9OH(d1)>C8H9SH(d2)>C8H10(a)> C8H9CN(d3).同时亦说明,自由基前线轨道能级差及生成自由基的相对稳定性和热力学等理论参数一样,亦适合于研究间二甲苯系列反应物的热解机理和热反应活性","authors":[{"authorName":"王惠","id":"4f280682-a25b-4505-b0eb-269f6b9150ce","originalAuthorName":"王惠"},{"authorName":"翟高红","id":"eefde747-54ab-4a0a-bf2a-575af1d57da4","originalAuthorName":"翟高红"},{"authorName":"冉新权","id":"867a7278-c3a6-47f9-80bc-116242df31f6","originalAuthorName":"冉新权"},{"authorName":"史启祯","id":"c4008bf0-6305-42d6-9cb3-85ce56fd267a","originalAuthorName":"史启祯"},{"authorName":"文振翼","id":"9a07f013-a624-4136-a9fc-3db13c0fa5de","originalAuthorName":"文振翼"},{"authorName":"罗瑞盈","id":"c2d776a0-c6b0-40e4-9b5a-1b7ca4dccdd0","originalAuthorName":"罗瑞盈"},{"authorName":"杨延清","id":"62f4f791-6497-48f9-a2b1-d9776c497f1e","originalAuthorName":"杨延清"}],"doi":"10.3321/j.issn:1000-324X.2001.02.007","fpage":"230","id":"bcb90929-7cdc-4ccd-a797-47c12921927f","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"1cb549ba-024d-47c3-9f6e-a916ee86ca3d","keyword":"碳前驱体","originalKeyword":"碳前驱体"},{"id":"89e31ca7-3ef5-4b8e-b376-0974dd1ece17","keyword":"热裂解机理","originalKeyword":"热裂解机理"},{"id":"158893ae-2647-43ce-9b43-a5298007cd3f","keyword":"AM1法","originalKeyword":"AM1法"}],"language":"zh","publisherId":"wjclxb200102007","title":"碳前驱体热解机理的理论研究——反应能量、自由基的轨道能级及相对稳定性","volume":"16","year":"2001"},{"abstractinfo":"为了研究MeV能量离子在生物样品中的能量损失与能量离散,分别使用1.0,1.8和2.8MeV质子和4.5 MeV氦离子分别辐照不同质量厚度的洋葱内表皮膜.当质子穿过该生物样品后,可以利用透射能谱测量透射离子的能量损失和能量离散.实验结果显示,在以上的生物样品中,MeV能量离子的能量损失值和TRIM程序模拟的结果相吻合,但是透射离子的能量离散值却与TRIM程序模拟结果有很大的不同.结合生物样品的结构不均匀的特性,对Bohr能量离散理论进行了修正,并发现修正后的Bohr能量离散理论计算结果与实验值符合得很好.","authors":[{"authorName":"马磊","id":"2c1e13ad-909e-4a1b-aabb-820e8729f14a","originalAuthorName":"马磊"},{"authorName":"陈启忠","id":"01bff731-b4d7-46fc-a7d0-643eeae111d8","originalAuthorName":"陈启忠"},{"authorName":"薛建明","id":"4090850f-cdd5-40ef-88db-7af779425a39","originalAuthorName":"薛建明"},{"authorName":"王宇钢","id":"5abc7ea4-cdec-48fd-936d-b6bd3f53f073","originalAuthorName":"王宇钢"}],"doi":"10.3969/j.issn.1007-4627.2007.02.011","fpage":"133","id":"57603a13-a95d-4952-9e0a-bbc377cdae05","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"c7fcdaf3-857a-4baf-b75d-73de3471216d","keyword":"MeV能量离子","originalKeyword":"MeV能量离子"},{"id":"b6a4ed7e-85ce-4d49-8aca-3e6417a933a2","keyword":"能量损失","originalKeyword":"能量损失"},{"id":"de4f8b82-c05f-4a82-b2a4-1e048538c0e4","keyword":"能量离散","originalKeyword":"能量离散"},{"id":"16420fd9-a745-4ce0-8562-b487e7411640","keyword":"生物样品","originalKeyword":"生物样品"}],"language":"zh","publisherId":"yzhwlpl200702011","title":"MeV能量离子在生物样品中的能量损失与能量离散","volume":"24","year":"2007"},{"abstractinfo":"在相对论密度泛函理论框架下引入了可分离的对相互作用,它的参数是由拟合核物质中Gogny力对关联性质来确定.在有限核的相对论Hartree-Bogoliubov和相对论准粒子无规位相近似的理论框架下,建立了可分离对相互作用在球形核和变形核中粒子-粒子道矩阵的计算方法.通过Talmi和Moshinsky变换,这种新的对相互作用在坐标空间下可以展开成一系列可分离项,并且很快收敛.它不仅保持了平移不变性,而且作为有限力程的对力,可以避免零程对力在高动量截断的困难.通过对Sn同位素链核基态、E2和E3激发态性质,以及Sm同位素链基态的性质研究,发现可分离对相互作用能够再现用Gogny对力得到的球形核的超流性质,并能够很好地符合已有的实验结果.这种方法还可用来描述任意微观对相互作用,并推广于三轴形变原子核以及转动系统的研究.为考虑角动量投影和粒子数投影的生成坐标(GCM)方法和粒子-振动耦合(PVC)理论提供更加真实的对关联性质描述.","authors":[{"authorName":"马中玉","id":"8bfef525-25f8-41bb-bf68-66d60f13fb54","originalAuthorName":"马中玉"},{"authorName":"田源","id":"bbb26114-77e9-485a-be92-61910496747a","originalAuthorName":"田源"},{"authorName":"P.Ring","id":"1a90e37e-c10b-41f3-9c52-7bad77d62a38","originalAuthorName":"P.Ring"}],"doi":"","fpage":"121","id":"758e7740-5b69-4e43-8d93-02eef41ed0ef","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"2ac7ce4a-4b28-4fad-a39c-9885d4340b2b","keyword":"可分离有限力程对相互作用","originalKeyword":"可分离有限力程对相互作用"},{"id":"a17c5c3e-0de6-4962-bb28-303d466a19c6","keyword":"相对论Hartree-Bogoliubov理论","originalKeyword":"相对论Hartree-Bogoliubov理论"},{"id":"d333b6b6-1beb-43f7-93cd-80d20c82853a","keyword":"相对论准粒子无规位相近似","originalKeyword":"相对论准粒子无规位相近似"}],"language":"zh","publisherId":"yzhwlpl201002001","title":"能量密度泛函理论和有限力程可分离对相互作用研究核的超流性质","volume":"27","year":"2010"},{"abstractinfo":"在济源钢铁公司4号高炉热平衡测试的基础上,根据工长的经验和实测参数,改进并完善了高炉能量管理优化与预测系统软件(BEM系统).利用BEM系统分析了风温、碱度、矿石铁含量等参数对高炉能量分配及冶炼指标的影响,旨在为生产操作提供理论依据和指导.实践表明:BEM系统运行效果良好.","authors":[{"authorName":"朱子宗","id":"d64f806f-8b2f-4997-9b61-dc7f76b11a65","originalAuthorName":"朱子宗"},{"authorName":"沈勇玲","id":"93e5b81c-7429-4c89-acf6-1788f7b2696e","originalAuthorName":"沈勇玲"},{"authorName":"岳鸿伟","id":"44b6b658-2245-47ae-9370-8d4461132d16","originalAuthorName":"岳鸿伟"},{"authorName":"高书元","id":"b7f02411-ba93-4008-9ffc-3627e7804af4","originalAuthorName":"高书元"},{"authorName":"宋绵新","id":"dca1b57a-fe66-4382-ba44-3adf9328b0c0","originalAuthorName":"宋绵新"},{"authorName":"谢华","id":"7c2243e2-4d31-4326-84a3-d6696f17a707","originalAuthorName":"谢华"}],"doi":"","fpage":"75","id":"7f82d38b-181e-4449-b31a-167db79977b3","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"922146d0-bd48-47f0-ac06-ce287d025955","keyword":"高炉","originalKeyword":"高炉"},{"id":"db88f2b4-e370-4df3-809e-48504b302bde","keyword":"能量管理","originalKeyword":"能量管理"},{"id":"e2988445-ab93-4bea-a3f9-669cd6535f9f","keyword":"优化","originalKeyword":"优化"},{"id":"75d6bcbc-9e84-493c-a2b7-38732332afd6","keyword":"预测","originalKeyword":"预测"}],"language":"zh","publisherId":"gtyjxb200401017","title":"高炉能量管理优化与预测系统","volume":"16","year":"2004"},{"abstractinfo":"分析了影响SSC注入能量的因素和SSC注入系统适应能量变化的能力,计算了在理论等时场下SSC注入系统对3种典型离子O8+,Xe22+和Ar15+的能量可接收范围,找出了加速较轻的重离子时束流损失较大的部分原因.","authors":[{"authorName":"丁原涛","id":"d2090ba8-09eb-445b-9d43-48ed4c12d91f","originalAuthorName":"丁原涛"},{"authorName":"王义芳","id":"9f4556a2-f215-4493-92a0-1baad129c8f9","originalAuthorName":"王义芳"},{"authorName":"刘巍","id":"e3f12712-2ef0-4450-b0d5-58109b81b88c","originalAuthorName":"刘巍"},{"authorName":"朱昆","id":"a3f14007-e05d-4867-bbcd-ddc0fc2ae235","originalAuthorName":"朱昆"}],"doi":"10.3969/j.issn.1007-4627.2001.01.008","fpage":"43","id":"e655910e-e483-4008-ba25-2cae925801d1","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"814a3545-3fca-412f-a020-fa6e9e6fe9fa","keyword":"分离扇回旋加速器","originalKeyword":"分离扇回旋加速器"},{"id":"82c16537-5823-457f-a302-8bd90051be57","keyword":"注入系统","originalKeyword":"注入系统"},{"id":"ce1bf452-650b-489d-9481-2cec26fd2682","keyword":"圈间距","originalKeyword":"圈间距"},{"id":"057df1f3-17db-45e8-a770-fed7f616de66","keyword":"能量匹配","originalKeyword":"能量匹配"}],"language":"zh","publisherId":"yzhwlpl200101008","title":"SSC注入系统能量接收范围的研究","volume":"18","year":"2001"}],"totalpage":1788,"totalrecord":17876}