欢迎登录材料期刊网

材料期刊网

高级检索

综述了近年来弛豫铁电单晶和织构陶瓷的制备及其介电、压电性能的研究进展.弛豫铁电单晶的制备方法主要有高温溶液法、布里奇曼法和固态再结晶法,尺寸可达40mm以上,(001)切片压电常数d33最大可达3000pC/N, k3达到0.93, 但是成分不均匀仍是影响晶体压电性能的一个主要因素.织构陶瓷的制备方法主要为固态再结晶法(TGG法和RTGG法), 其耗时短、成本低,压电性能可达到单晶的60%~80%,介电常数甚至可以超过部分单晶,是一个新的发展方向.

参考文献

[1] 干福熹.信息材料[M].天津:天津大学出版社,2000:496.
[2] Qu Shaobo;Yang Zupei;Gaofeng;Tian Changsheng .The effect of La doping on the electrostriction and electric hysteresis of 0.85Pb(Zn1/3Nb2/3)O3-0.10BaTiO3-0.05PbTiO3 Ceramics[J].Ceramics International,2000(26):651-654.
[3] Zupei Y.;Changsheng T.;Shaobo Q. .Effect of excess PbO or MgO and purity of MgO on phase structure and dielectric properties of PMN-PT ceramics prepared by MSS[J].Journal of Materials Science Letters,2000(19):1743-1746.
[4] 许桂生,罗豪甦,王评初,徐海清,殷之文.新型弛豫型铁电单晶PMNT的铁电与压电性能[J].科学通报,1999(20):2157-2161.
[5] Kobayashi T;Shimanuki S;Saitoh S et al.Improved growth of large lead zinc titanate piezoelectric single crystals for medical ultrasonic transducers[J].Japanese Journal of Applied Physics,1997(36):6035-6038.
[6] 陈辛尘,王评初,潘晓明,瞿翠凤,殷之文.铌镁酸铅-钛酸铅陶瓷介电与压电性能的研究[J].无机材料学报,2000(01):109-113.
[7] 许桂生,罗豪,齐振一,徐海清,殷之文.弛豫型铁电体PZNT制备与性能研究的进展[J].无机材料学报,1999(01):1-11.
[8] Robert F .Server,Shape-Changing Crystals Get Shiftier[J].Science,1997,275:1878.
[9] E. M. Sabolsky;A. R. James;S. Kwon;S. Trolier-McKinstry;G. L. Messing .Piezoelectric properties of 〈001〉 textured Pb(Mg_(1/3)Nb_(2/3))O_(3)-PbTiO_(3) ceramics[J].Applied physics letters,2001(17):2551-2553.
[10] K.Harada;Y.Hosono;Y.Yamashita .Pirzoelectric Pb[Zn_1/3Nb_2/3]_0.91 Ti_0.09]O_3 single crystals with a diameter of 2 inches by the solution Bridgman method supported on the bottom of a crucible[J].Journal of Crystal Growth,2001(0):294-298.
[11] M Dong;Z G Ye .High-temperature Solution Growth and Characterization of the Piezo-/ferroelectric (1-x)Pb (Mg1/3Nb2/3)O3-xPbTiO3 Single Crystals[J].Journal of Crystal Growth,2000,209:81-90.
[12] Edward M Sabolsky;Gary L Messing;Susan Trolier McKinstry et al.Templated Grain Growth of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Single Crystals on BaTiO3 Crystals[R].U S Navy Workshop on Acoustic Transduction Matericals and Devices,April 11-13,2000.
[13] Khan Ajmal .Growth of Pb(Mg_1/3Nb_2/3)O_3-35 mol% PbTiO_3 Single Crystals from (111) Substrates by Seeded Polycrystal Conversion[J].Journal of the American Chemical Society,1999(11):2958-2962.
[14] 张克从;张乐惠.晶体生长科学与技术[M].北京:科学出版社,1997:367.
[15] T Kobayashi;S Shimanuki;S Saitoh;Y Yamashita .Impro-ved Growth of Large Lead Zinc Niobate Titanate PiezoelectricSingle Crystals for Medical Ultrasonic Transducers[J].Japanese Journal of Applied Physics,1997(36):6035-6038.
[16] 肖敬忠,张连翰,杭寅.弛豫型铁电晶体92%PZN-8%PT的熔盐法生长[J].功能材料,2000(04):421-422,425.
[17] Yiping Guo;Haiqing Xu;Haosu Luo .Growth and electrical properties of Pb(Sc_1/2Nb_1/2)_O_3-Pb(Mg_1/3Nb_2/3)O_3-PbTiO_3 ternary single Crystals by a modified Bridgman technique[J].Journal of Crystal Growth,2001(1):111-116.
[18] Gao YQ.;Wu YJ.;He TH.;Xu GS.;Luo HS.;Xu HQ. .Growth and dielectric properties of 0.48 Pb(Fe1/2Nb1/2)O-3-0.52 PbTiO3 single crystal[J].Japanese journal of applied physics,2001(8):4998-4999.
[19] Guisheng Xu;Haosu Luo;Haiqing Xu .Structural defects of Pb(Mg1/3Nb2/3)O_3-PbTiO_3 single crystals grown by a Bridgman method[J].Journal of Crystal Growth,2001(1/2):202-208.
[20] Kouichi Harada;Senji Shimanuki;Tsuyoshi Kobayashi et al.Crystal Growth and Electrical Properties of Pb(Zn1/3Nb2/3)0.91TiO0.09)O3 Single Crystal Produced by Solution Bridgman Method[J].Journal of the American Ceramic Society,1998,81(11):2785-2788.
[21] Hyun M Jang;S Hoon Oh;Jong H Moon .Thermodynamic Stability and Mechanisms of Formation and Decomposition of Perovskite Pb(Zn1/3Nb2/3)O3 Prepared by the PbO Flux Method[J].Journal of the American Ceramic Society,1992,75(01):82-88.
[22] Z G Ye;M Dong;Y Yamashita .Thermal Stability of the Pb(Zn1/3Nb2/3)3-PbTiO3 and Pb(Mg1/3Nb2/3)O3-PbTiO3[PMNT68/32] Single Crystals[J].Journal of Crystal Growth,2000,211:247-251.
[23] Li T.;Chan HM.;Harmer MP.;Park SE.;Shrout TR.;Michael JR.;Scotch AM. .Single crystals of Pb(Mg1/3Nb2/3)O-3-35 mol% PbTiO3 from polycrystalline precursors[J].Journal of the American Ceramic Society,1998(1):244-248.
[24] Edward M Sabolsky;Gary L Messing;Susan Trdier-McKinstry.Templated Grain Growth of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Single Crystals on BaTiO3 Crystals[A].,2000
[25] Tao Li;Suxing Wu;Ajmal Khan .Heteroepitaxial growth of bulk single-crystal Pb(Mg_1/3Nb_2/3)O_3-32 mol PbTiO_3 from (111) SrTiO_3[J].Journal of Materials Research,1999(8):3189-3191.
[26] F J Kumar;L C Lim;C Chilong et al.Morphological Aspects of Flux Growth 0.91PZN-0.09PT Crystals[J].Journal of Crystal Growth,2000,216:311-316.
[27] 许桂生,罗豪,仲维卓.铅基复合钙钛矿型弛豫铁电单晶的生长基元与生长机理I.PMNT单晶的表面形貌、负晶结构及生长基元的组装与拆分[J].化学学报,2000(02):172.
[28] L Zhuang;M Dong;Z G Ye.Flux Growth and Characterization of the Relaxor-based PbO3[PZNT] Piezocrystals[J].Materials Science and Engineering,2000(B78):96-104.
[29] 王评初,罗豪,李东林,潘晓明,陈辛尘,殷之文.PMN-PT单晶与陶瓷在性能及相变方面的特点[J].无机材料学报,2001(01):56-62.
[30] T R Shrout;Z P Chang;N Kim et al.Dielectric Behavior of Single Crystals near the (1-x)PMN-xPT Morphotropic Phase Boundary[J].Ferroelectrics Letters,1990(12):63.
[31] Toshihiko Tani .Crystalline-oriented Piezoelectric Bulk Ceramics with a Perovskite-type Structure[J].Journal of the Korean Physical Society,1998,32:S1217-S1220.
[32] Cihangir Duran;Susan Trolier McKinstry;Gary L Messing .Fabrication and Electrical Properties of Textured Sr0.53Ba0.47Nb2O6 Ceramics by Templated Grain Growth[J].Journal of the American Ceramic Society,2000,83(09):2203-2213.
[33] Edward M Sabolsky;Seongtae Kwon;Susan Trolier-McKinstry.Piezoelectric and Dielectric Properties of Fiber-textured PMN-32PT Ceramics by Templated Grain Growth[A].,2001
[34] Seongtae Kwon;Edward M Sabolsky;Ajit James.Processing and Properties of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 by Templated Grain Growth on SrTiO3 Templates[A].,2001
[35] J M Xue;J Wang;D M Wan et al.Perovskite Nanocrystalline of PMN-based Ferroelectrics by Mechanical Activation[J].Ferroelectrics,2001,253:21-30.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%