材料工程, 2003, (9): 44-47. doi: 10.3969/j.issn.1001-4381.2003.09.012
40CrNiMoA钢激光淬火+氮化复合处理
席守谋 1, , 张建国 2, , 孙晓燕 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于分形理论构建了颗粒填充高分子复合材料拉伸断口的分形模型,进而提出了分形维数计算公式.应用公式计算了体积分数为2%~30%颗粒填充高分子材料拉伸断口的分形维数,并分别与相关文献报道的碳酸钙和二氧化钛填充的ABS复合材料(CaCO3/ABS和TiO2/ABS)实测值进行了对比分析.结果表明理论值与实测值较为符合.","authors":[{"authorName":"梁基照","id":"e9fee728-d6f0-4bb9-a1cd-be9964b5677e","originalAuthorName":"梁基照"},{"authorName":"吴成宝","id":"2b28cff3-6260-4a69-9771-0274bb70fc91","originalAuthorName":"吴成宝"}],"doi":"10.3969/j.issn.1001-4381.2008.01.005","fpage":"18","id":"8e2a21c2-5397-4d62-a82f-05f7dedb3b34","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"4adeb511-2bf2-4659-8274-86bb31c3e2b6","keyword":"颗粒填充","originalKeyword":"颗粒填充"},{"id":"b524d459-82c4-4991-98b2-9f26c1917213","keyword":"高分子复合材料","originalKeyword":"高分子复合材料"},{"id":"a54f474e-2b7b-4f50-b8db-93596b38b25c","keyword":"拉伸断口","originalKeyword":"拉伸断口"},{"id":"ef8d4437-62a6-4541-bd02-eb33f02b39ad","keyword":"分形模型","originalKeyword":"分形模型"}],"language":"zh","publisherId":"clgc200801005","title":"颗粒填充高分子复合材料拉伸断口的分形模型","volume":"","year":"2008"},{"abstractinfo":"新型导热材料石墨泡沫具有很好的热物理性质.本文在实验获取这种新型多孔材料的基础上,建立了基于分形理论的材料结构和导热模型,采用热阻法给出了石墨泡沫材料的等效导热系数的关系式,计算了石墨泡沫的剖面孔隙面积分形维数和等效导热系数.","authors":[{"authorName":"张新铭","id":"a25f3e99-0a63-4c3e-8ec5-cbe7d4f0ca1c","originalAuthorName":"张新铭"},{"authorName":"彭鹏","id":"43facf5b-6f7c-4f2e-ab7a-8d60d79cb5e5","originalAuthorName":"彭鹏"},{"authorName":"曾丹苓","id":"26611e6b-9fd5-443a-9bfb-7c102d07755b","originalAuthorName":"曾丹苓"}],"doi":"","fpage":"82","id":"a203b19d-dcff-4bda-a0f4-ca3a7526c2c5","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4b17678a-854e-453e-bb49-6db4f6070fe1","keyword":"导热系数","originalKeyword":"导热系数"},{"id":"8188805c-026d-4fd5-9609-18ba8232b6bb","keyword":"分形模型","originalKeyword":"分形模型"},{"id":"8c961ad6-feb7-4195-ab37-d0ea9bef7ba9","keyword":"石墨泡沫","originalKeyword":"石墨泡沫"}],"language":"zh","publisherId":"gcrwlxb2006z1022","title":"石墨泡沫新材料导热的分形模型","volume":"27","year":"2006"},{"abstractinfo":"分形是材料表征中一种新兴的方法.本文介绍了介孔材料的基本特性和表征方法;阐述了分形理论的发展、分形维数的计算测定与分形在介孔材料表征中的应用,分析了介孔材料的分形模型,指出分形在介孔材料表征中的发展前景.","authors":[{"authorName":"杨华明","id":"37eb870d-1f12-4845-bde6-9ea4fe3574b5","originalAuthorName":"杨华明"},{"authorName":"张花","id":"e21d2c6d-b9fa-47a8-a3d2-c2a7ac99bcb4","originalAuthorName":"张花"},{"authorName":"欧阳静","id":"4001fb1d-6ca3-4e81-96bd-ea4f67491fb2","originalAuthorName":"欧阳静"},{"authorName":"李咸伟","id":"c4fa381b-cce2-40ca-bc59-ae4024360938","originalAuthorName":"李咸伟"},{"authorName":"王淀佐","id":"4e1289e6-f0bc-4bb2-ac54-9a98a3738e64","originalAuthorName":"王淀佐"}],"doi":"","fpage":"495","id":"d7554506-da5c-4dd5-9e79-3944502e24a7","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"36c00e67-bb8c-4ec2-88ae-743b6880fbf0","keyword":"介孔材料","originalKeyword":"介孔材料"},{"id":"84546355-6cb4-4b90-ad50-060774eb01e5","keyword":"分形","originalKeyword":"分形"},{"id":"7361a5af-fe68-49d1-bdd8-3b8fe09e356f","keyword":"分形维数","originalKeyword":"分形维数"},{"id":"3e39cdb0-a743-4249-a90c-03197333d40e","keyword":"表征","originalKeyword":"表征"},{"id":"06fc21d0-fb52-4d83-b841-a59374f7c094","keyword":"分形模型","originalKeyword":"分形模型"}],"language":"zh","publisherId":"gncl200504004","title":"介孔材料分形表征的研究进展","volume":"36","year":"2005"},{"abstractinfo":"本文讨论了粒子在分形结构中的扩散,随机Sierpinski地毯上的扩散模拟表明:分形结构中的扩散已不再满足Fick扩散定律.扩散速度较欧氏空间减慢了,即\"扩散慢化\"效应.而且可以看到由于结构的自相似特征,扩散过程也表现出某种自相似性(标度性),分形结构和欧氏空间中的扩散特点是有本质的差异的.","authors":[{"authorName":"张东晖","id":"336d2867-d745-4fee-bb94-77fb106a047b","originalAuthorName":"张东晖"},{"authorName":"施明恒","id":"86062b72-4112-47eb-90e6-1056af31c499","originalAuthorName":"施明恒"},{"authorName":"金峰","id":"4afb7ac2-3705-4e93-a407-437c35b90923","originalAuthorName":"金峰"},{"authorName":"杨浩","id":"4edadc6d-5bb4-491e-9cda-d44709919dcb","originalAuthorName":"杨浩"}],"doi":"","fpage":"822","id":"79704953-d4ac-4c82-9d6a-c81a5ea1d601","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ed852bf0-92ec-4f95-8b19-fda775194a12","keyword":"分形模型","originalKeyword":"分形模型"},{"id":"f30a0e2d-08b3-4ea1-a9cc-da6f5f5d8a20","keyword":"多孔介质","originalKeyword":"多孔介质"},{"id":"659ef014-6e89-49e4-a115-f0dc4529551d","keyword":"扩散","originalKeyword":"扩散"}],"language":"zh","publisherId":"gcrwlxb200405029","title":"分形多孔介质的粒子扩散特点(Ⅰ)","volume":"25","year":"2004"},{"abstractinfo":"本文进一步讨论了粒子在分形结构中的扩散,首先计算测定了各分形结构的谱维数,然后对其布朗运动特点进行了分析讨论,最后模拟得到了粒子扩散概率分布,它们表现出很多有趣的特征:不均匀性,内含空洞和标度性等.这些结果可以更好地了解气体在分形结构中的扩散.","authors":[{"authorName":"张东晖","id":"e39182e6-2197-4d38-a36a-2a0491cfa7d5","originalAuthorName":"张东晖"},{"authorName":"施明恒","id":"c2bea35e-87e2-4942-8634-69a537c0bf8c","originalAuthorName":"施明恒"},{"authorName":"金峰","id":"89e17e8f-5743-4096-bce4-c7fc70e7fc6e","originalAuthorName":"金峰"},{"authorName":"杨浩","id":"a2829fd3-649d-4a6d-a5ea-f66be0a7f6bd","originalAuthorName":"杨浩"}],"doi":"","fpage":"825","id":"abe29aa8-49c8-4d0e-b938-61236239dc12","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fe4c288d-b6b0-440f-8749-8a717bd10a83","keyword":"分形模型","originalKeyword":"分形模型"},{"id":"ca445e72-5aaa-4f69-9082-a7a234250bfa","keyword":"多孔介质","originalKeyword":"多孔介质"},{"id":"786b8422-01ff-420e-9508-a7b5fddd91a7","keyword":"扩散","originalKeyword":"扩散"}],"language":"zh","publisherId":"gcrwlxb200405030","title":"分形多孔介质的粒子扩散特点(Ⅱ)","volume":"25","year":"2004"},{"abstractinfo":"根据Mandelbrot的分形几何概念,建立了流体在粗糙表面进行化学反应的动力学模型.该模型的无量纲表达式为1-(1-X)1-βDs/3=t/t1,式中x为转化率,β为浓度级数,Ds为分形维数,t1为完全化学反应时间.该模型适用于描述焦炭气化反应速率过程,相应的表观激活能为54.814 kJ/moL与传统的收缩核模型相比,分形模型与实验数据的符合程度更好、物理意义更清晰.传统的收缩核模型只是分形模型在规整几何条件下的特殊形式.","authors":[{"authorName":"陶东平","id":"aaa09d51-cba6-4dcb-a7f6-143b60288acd","originalAuthorName":"陶东平"}],"doi":"10.3321/j.issn:0412-1961.2001.10.015","fpage":"1073","id":"e4cb3a5e-2834-472b-b44e-61a79e94b9aa","issue":"10","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f135d280-a130-4a65-9a66-66b75031b657","keyword":"动力学","originalKeyword":"动力学"},{"id":"c9483ed3-7427-45bb-a907-4d45ffbf3c41","keyword":"分形模型","originalKeyword":"分形模型"},{"id":"06eb22db-090b-4428-8886-391ba2608a48","keyword":"粗糙表面","originalKeyword":"粗糙表面"},{"id":"e5891349-2735-4411-975b-d57c9a9cf6a2","keyword":"碳","originalKeyword":"碳"},{"id":"29add74f-e6aa-41b3-9bff-3bdc3a94b9f9","keyword":"气化反应","originalKeyword":"气化反应"}],"language":"zh","publisherId":"jsxb200110015","title":"粗糙表面化学反应动力学模型","volume":"37","year":"2001"},{"abstractinfo":"基于氢致裂纹扩展的氢增塑性理论,提出一种氢致裂纹扩展 的分形模型,并根据分形几何理论,建立了金属在氢环境下广义有效表面能Γ(H)与分形 维数D以及氢致裂纹扩展应力强度因子KIH的关系,从而得到D与KISCC的 关系,并进行实验验证,表明方法的正确性.","authors":[{"authorName":"董绍华","id":"55360782-b111-4aac-aff0-863c94cda77d","originalAuthorName":"董绍华"},{"authorName":"吕英民","id":"0ee8c016-f0a3-4793-8576-ddf55c34b426","originalAuthorName":"吕英民"}],"categoryName":"|","doi":"","fpage":"106","id":"3e508da0-3a92-4bc5-b35c-c2028bb4e037","issue":"2","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"279a65bb-8116-430d-b4b9-980dc6fc6ad0","keyword":"氢致裂纹","originalKeyword":"氢致裂纹"},{"id":"8588ba71-33e4-4ef8-92b6-776c541320f1","keyword":"ductility","originalKeyword":"ductility"},{"id":"27a380fb-da67-4c16-9814-b0c51b02330a","keyword":"fractal dimension","originalKeyword":"fractal dimension"}],"language":"zh","publisherId":"1005-4537_2001_2_4","title":"氢致裂纹扩展的分形模型","volume":"21","year":"2001"},{"abstractinfo":"根据该领域近期进展,介绍分形理论在腐蚀行为描述及腐蚀\n\n模型研究等领域的应用.具体分析了一些成功的事例,包括用分维值修正腐蚀波动性指标(如\n\n标准偏差),以便更好地描述腐蚀行为;观察腐蚀表面分形特征,如早期大气腐蚀中微\n\n液滴尺寸分布和腐蚀表面坑直径及深度分布,并获取分布分维指标;提出腐蚀图像分维的新\n\n计算法,并发现其二维分维D2D和三维分维D3D分别代表表面坑直径及深度的分\n\n布分维;建立基于分形动力学过程的腐蚀模型,预测金属在大气及土壤中的腐蚀发展,并揭\n\n示了分形模型和经验模型之间的参数关联.","authors":[{"authorName":"翁永基","id":"337cdd59-830a-41ef-979e-e6b4fae847af","originalAuthorName":"翁永基"},{"authorName":"许述剑","id":"d6f47513-1d12-4127-b055-02aa3795211b","originalAuthorName":"许述剑"},{"authorName":"边丽","id":"da0ce180-27cb-4537-91ab-69d52f861ed9","originalAuthorName":"边丽"}],"categoryName":"|","doi":"","fpage":"315","id":"265a02b9-56f8-4674-a49c-a1603c180c7a","issue":"5","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"ed9a319f-ae2c-461b-9120-329fc5f8168c","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"ad1abab8-2341-44f1-b20a-5ae244bfcfaa","keyword":"corrosion model","originalKeyword":"corrosion model"},{"id":"06edb469-2d2f-42d4-b969-74f51a91728e","keyword":"fractal method","originalKeyword":"fractal method"},{"id":"c178abf1-53c4-432e-bd77-5a6388de8603","keyword":"application sample","originalKeyword":"application sample"}],"language":"zh","publisherId":"1005-4537_2006_5_9","title":"腐蚀和腐蚀模型研究中的分形方法","volume":"26","year":"2006"},{"abstractinfo":"增强型地热系统(EGS)旨在经济开采地下3~10 km区域干热岩蕴含的热能,并用于地面发电.EGS经济性与其采热性能直接关联,人工热储内热交换过程是需要重点研究的内容.热储内裂隙形貌及分布对采热过程有重大影响.基于热储裂隙开度和长度的分形特征,本文建立起EGS分形分叉网络模型,推导出EGS采热速率表达式.分析发现泵功、裂隙最大开度、扭曲率分形维数、裂隙开度分布分形维数、裂隙分叉网络级数及裂隙长度都是影响EGS采热速率的重要因素.","authors":[{"authorName":"罗良","id":"ffe876c4-c071-4476-aeb6-fc80ecb6d6f3","originalAuthorName":"罗良"},{"authorName":"曹文炅","id":"4800ea62-c61f-44c6-9251-1cd9bac029d4","originalAuthorName":"曹文炅"},{"authorName":"蒋方明","id":"50d3269c-8ec1-4db0-9fb3-851b5a9c6135","originalAuthorName":"蒋方明"}],"doi":"","fpage":"388","id":"540dea27-ace7-4557-8e1d-899df79b04ad","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"73a88a63-3cff-4885-b087-d287fa792773","keyword":"增强型地热系统","originalKeyword":"增强型地热系统"},{"id":"351d8a7d-8e9f-46a1-ad08-c9a1acbeb7e4","keyword":"分形","originalKeyword":"分形"},{"id":"f5f4a439-7e9a-4495-af15-61da713160ff","keyword":"分叉网络","originalKeyword":"分叉网络"},{"id":"8ca9d8bb-c2d7-4d03-8374-18ebd315c076","keyword":"采热速率","originalKeyword":"采热速率"}],"language":"zh","publisherId":"gcrwlxb201502035","title":"增强型地热系统采热的分形分叉网络模型","volume":"36","year":"2015"},{"abstractinfo":"本文利用激光层析技术和数字图像处理技术,在对Red=4335~11100范围内的Bunsen式湍流预混火焰热图像序列进行分形分析的基础上,提出了一种基于分形理论的湍流预混火焰传播速度模型,该模型将小尺度涡团在火焰锋面的强化湍流扩散效应归结为对锋面结构的改变上.结果表明:利用该模型预测的火焰传播速度与试验结果基本吻合.","authors":[{"authorName":"杨宏晻","id":"7fb7c826-d5ea-4417-a567-d69f77305f63","originalAuthorName":"杨宏晻"},{"authorName":"顾","id":"c428115c-dd89-4e70-90e6-0616c2413c89","originalAuthorName":"顾"},{"authorName":"刘勇","id":"36d0b94c-bbe2-47e8-9777-77ff79a1cb66","originalAuthorName":"刘勇"},{"authorName":"徐益谦","id":"58051eb1-14d1-4569-9cc5-f482ad4e9bd1","originalAuthorName":"徐益谦"}],"doi":"","fpage":"507","id":"554c6972-4018-42bc-b7bf-4eda99d44512","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8ce72a59-db62-4953-86ff-abf799ff04d3","keyword":"湍流预混火焰","originalKeyword":"湍流预混火焰"},{"id":"9d151967-34e0-48fd-9c54-17f6c2e368d2","keyword":"分形特性","originalKeyword":"分形特性"},{"id":"63be3378-7e4c-454a-9b18-1bb38c649c7e","keyword":"传播速度","originalKeyword":"传播速度"},{"id":"dc47e811-25ce-43c2-960e-2cfa230a6c78","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"gcrwlxb200104032","title":"湍流预混火焰传播速度的分形模型研究","volume":"22","year":"2001"}],"totalpage":2833,"totalrecord":28326}