欢迎登录材料期刊网

材料期刊网

高级检索

Computer experiments were performed on simulated polycrystalline material samples that possess locally anisotropic microstructures to investigate stress intensity factor ( K ) variations and anisotropy along fronts of microcracks of different sizes. The anisotropic K , arising from inhomogeneous stresses in broken grains, was determined for planar microcracks by using a weight function-based numerical technique. It has been found that the grain-orientation-geometry-induced local anisotropy produces large variations in K along front of microcracks, when the crack size is of the order of few grain diameters. Synergetic effect of grain orientation and geometry of broken grains control K variations and evolution along the microcrack front. The K variations may diminish at large crack sizes, signifying a shift of K calculation to bulk stress dependence from local stress dependence. Local grain geometry and texture may lead to K anisotropy, producing unusually higher/lower K at a segment of the crack front. Either K variation or anisotropy cannot be ignored when assessing a microcrack.

参考文献

[1] K.S.Ravichandran;X.D.Li .Fracture mechanical character of small cracks in polycrystalline materials concept and numerical K calculations[J].Acta materialia,2000(2):525-540.
[2] Lankford J .The growth of small fatigue cracks in 7075-T6 aluminum[J].Fatigue & Fracture of Engineering Material & Structure,1982,5:233-248.
[3] Suresh S .Crack deflection: implications for the growth of long and short fatigue cracks[J].Metallurgical and Materials Transactions,1983,14:23752385.
[4] E R de los Rios;K J Miller.The Short Fatigue Cracks . EGF Pub. 1. Eds. by[M].London, UK:Mechanical Engineering Publication,1986
[5] Small Fatigue Cracks D[A].The Metallurgical Society of AIME,Warrendale,PA,1986
[6] Tokaji K et al.Limitations of linear elastic fracture mechanics in respect to small fatigue cracks and microstructure[J].Fatigue & Fracture of Engineering Material & Structure,1986,9:1-14.
[7] Ravichandran K S;Larsen J M .Effects of crack aspect ratio on the behavior of small surface cracks in fatigue: Part Ⅱ. experiments on a titanium (Ti-8Al) alloy[J].Metallurgical and Materials Transactions,1997,28:157-169.
[8] Müller C;Exner H E .Influence of a grain size gradient on the profile and propagation of fatigue cracks in titanium[J].Zeitschrift fur Metallkunde,1998,89:338-342.
[9] N. J. Teng;T. H. Lin .Elastic anisotropy effect of crystals on polycrystal fatigue crack initiation[J].Journal of engineering materials and technology,1995(4):470-477.
[10] WU M S;Guo J .Analysis of a sector crack in a three-dimensional Voronoi polycrystal with microstructure stresses[J].ASME Journal of Applied Mechanics,2000,67:5058.
[11] Li Xu-Dong;Ravichandran K S.The role of grain-induced local anisotropy on stress intensity factor for microstructurally-small cracks, in Small Fatigue Cracks: Mechanics and Mechanisms[A].London:Elsevier Science Ltd,1999:85-92.
[12] Nemat-Nasser S.Micromechanics: Overall Properties of Heterogeneous Materials . 1st ed, Elsevier[M].New York,1999
[13] Kocks U F;Tomé C N;Wenk H R.Texture and Anisotropy:Preferred Orientations in Polycrystals and Their Effect on Materials Properties[M].Cambridge:Cambridge University Press,1998
[14] Anderson M P et al.Computer simulation of grain growth - I.Kinetics[J].Acta Metallurgy,1984,32:783-791.
[15] Humphreys F J;Hatherly M .Modelling mechanisms and microstructures of recrystallisation[J].Materials Science and Technology,1992,8:135-143.
[16] Anderson M P;Grest G S;Srolovitz D J .Grain growth in three dimension: a lattice model[J].Scripta Metallurgica et Materialia,1985,19:225-230.
[17] Mehnert K;Klimanek P.in Proceedings of an International Conference on Texture[A].Trans Tech Publications,CH-Aedermannsdorf,1998
[18] Okabe A;Boots B;Sugihara K.Spatial Tessellations Concepts and Applications of Voronoi Diagrams[M].New York,1999
[19] Roe R J;Krigbaum W R .Description of crystallite orientation in polycrystalline materials having fiber texture[J].Journal of Chemical Physics,1964,40:2608-2615.
[20] Nye J F.Physical Properties of Crystals: Their Representation by Tensors and Matrices[M].Oxford Science Publications Ltd. ,Oxford,UK,1985
[21] Eshelby J D .The determination of elastic field of an ellipsoid and related problems[J].Proceedings of the Royal Society,1957,241:376-396.
[22] Kroner E .Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls[J].Zeitschrift für Physik,1958,151:504-518.
[23] Kneer G .über die Berechnung der Elastizitatsmoduln vielkristalliner Aggregate mit Textur[J].Physica Status Solidi,1965,9:825-838.
[24] Morris P .Elastic constants of polycrystals[J].International Journal of Engineering Science,1970,8:49-61.
[25] Xu-Dong Li .Computer Identification of Structural Weaknesses in Locally Anisotropic Polycrystalline Materials[J].Journal of engineering materials and technology,2001(3):361-370.
[26] Li X-D .Numerical correlation of material structure weaknesses in anisotropic polycrystalline materials[J].Acta Mechanica,2002,155:137-155.
[27] Li X-D .Numerical assessment of composite structure weaknesses in short-fiber reinforced MMCs[J].Mechanics of Materials,2002,34:191216.
[28] Li Xu-Dong.Computer assessment of material structure weaknesses in polycrystalline materials[J].Archive of Applied Mechanics
[29] Tvergaard V;Hutchinson J W .Microcracking in ceramics induced by thermal expansion or elastic anisotropy[J].Journal of the American Ceramic Society,1988,71:157-166.
[30] H. Nozaki;M. Taya .Elastic fields in a polygon-shaped inclusion with uniform eigenstrains[J].Journal of Applied Mechanics,1997(3):495-502.
[31] Waldvogel J .The Newtonian potential of homogeneous polyhedra[J].Zeitschrift für angewandte Mathematik und Physik,1979,30:388-398.
[32] GREGORY J. RODIN .ESHELBY'S INCLUSION PROBLEM FOR POLYGONS AND POLYHEDRA[J].Journal of the Mechanics and Physics of Solids,1996(12):1977-1995.
[33] Bueckner H F .A novel principle for the computation of stress intensity factors[J].ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK,1970,50:529-546.
[34] Oore M;Burns D J .Estimation of stress intensity factor for irregular cracks subjected to arbitrary normal stress field[J].Journal of Pressure Vessel Technology-Transactions of The Asme,1980,102:202-211.
[35] Desjardins J L;Burns D J;Thompson J C .A weight function technique for estimating stress intensity factors for cracks in high pressure vessels[J].Journal of Pressure Vessel Technology-Transactions of The Asme,1991,113:10-21.
[36] Beghini M;Bertini L;Gentili A .An explicit weight function for semi-elliptical surface cracks[J].Journal of Pressure Vessel Technology-Transactions of The Asme,1997,119:216-22.
[37] Zeng X H;Ericsson T .Anisotropy of elastic properties in various aluminium-lithium sheet alloys[J].Acta Materialia,1996,44:1801-1812.
[38] Simmons G;Wang H.Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook 2nd edn[M].The MIT Press,Cambridge,MA,USA,1970
[39] Yang S W .Elastic constants of a monocrystalline nickel-based superalloy[J].Metallurgical and Materials Transactions,1985,16:661-665.
[40] H.J. Bunge;R. Kiewel;Th Reinert .Elastic properties of polycrystals-- influence of texture and stereology[J].Journal of the Mechanics and Physics of Solids,2000(1):29-66.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%