欢迎登录材料期刊网

材料期刊网

高级检索

高温钛合金是先进航空发动机压气机应用的理想材料,代替钢或镍基高温合金,可以显著提高发动机的推重比和服役性能.随着钛合金使用温度的提高,高温蠕变抗力越来越成为影响其使用温度和使用寿命最关键的力学性能.在400~600℃的温度范围内,钛合金的蠕变变形一般受位错攀移机制所控制,蠕变激活能近似等于有效扩散激活能,因此,扩散是影响钛合金高温蠕变抗力的最主要因素.杂质元素Fe在钛合金中具有反常大的扩散能力,是Ti自扩散系数的103~105倍,在Ti中的扩散可能受离解扩散机制所控制.钛合金中的微量Fe同时会显著促进Ti的自扩散,提高位错攀移速率,从而降低蠕变抗力.为了改善高温钛合金的蠕变性能,需要严格控制原材料如海绵钛和中间合金中杂质Fe的含量.

参考文献

[1] WINSTONE M R;PARTRIDGE A;BROOKS J W.The contribution of advanced high-temperature materials to future aeroengine[A].Cambridge,UK:Journal of Multi-body Dynamics,2001:63-73.
[2] HICKS M A;THOMAS M C.Advances in aeroengine materials[A].Ireland:Trinity College Dublin,2003:43-56.
[3] HELM D.Application of high temperature titanium alloys in aero-engine-limits due to bulk and surface related properties[A].San Antonio:TMS,2006:3-12.
[4] L(U)TJERING G;WILLIAMS J C.Titanium[M].Berlin:springer-verlag,2003:238.
[5] ROSENBERG H W.Titanium alloying in theory and practice[A].Oxford,UK:Pergamon Press,1970:851-859.
[6] BLACKBURN M J .The ordering transformation in titanium:aluminum alloys containing up to 25 at.pct aluminum[J].Trans of the Metal Society of AIME,1967,239:1200-1208.
[7] L(U)TJERING G;WEISSMANN S .Mechanical properties of age-hardened titanium-aluminum alloys[J].Acta Metallurgica,1970,18:785-795.
[8] WOODFIELD A P;POSTANS P J;LORETTO M H et al.The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S[J].Acta Metallurgica,1988,36(03):507-515.
[9] J.C. WILLIAMS;R.G. BAGGERLY;N.E. PATON .Deformation Behavior of HCP Ti-Al Alloy Single Crystals[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2002(3a):837-850.
[10] RAMACHANDRA C;SINGH V .Silicide precipitation in alloy Ti-6Al-5Zr-0.5Mo-0.25Si[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1982,13:771-775.
[11] FLOWER H M;SWANN P R;WEST R F .Silicide precipitation in the Ti-Zr-Al-Si system[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1971,2:3289-3297.
[12] SINGH A K;ROY T;RAMACHANDRA C .Microstructural stability on aging of an α+β titanium alloy:Ti-6Al-1.6Zr-3.3Mo-0.30Si[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1996,27:1167-1173.
[13] HAYES R W;VISWANATHAN G B;MILLS M J .Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo:I.the effect of nickel on creep deformation and microstructure[J].Acta Materials,2002,50:4953-4963.
[14] ES-SOUNI M .Primary,secondary and anelastic creep of a high temperature near α-Ti alloy Ti6242Si[J].Materials Characte-rizations,2000,45:153-164.
[15] ES-SOUNI M .Creep deformation behavior of three high-temperature near α-Ti alloys:IMI834,IMI829,and IMI685[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,2001,32:285-293.
[16] RHEE S I;NAM S W;HAGIWARA M .Effect of TiBp particle reinforcement on the creep resistance of near α titanium alloy made by blended elemental powder metallurgy[J].Journal of Alloys and Compounds,2003,359:186-192.
[17] K(O)PPERS M;HERZIG C;FRIESEL M et al.Intrinsic self-diffusion and substitutional Al diffusion in α-Ti[J].Acta Materials,1997,45:4181-4191.
[18] Y. MISHIN;Chr. HERZIG .DIFFUSION IN THE Ti-Al SYSTEM[J].Acta materialia,2000(3):589-623.
[19] NAKAJIMA H;KOIWA M.Diffusion of iron,cobalt and nickel in α-titanium[A].Munich,Germany:Deutsche Gesellschaft Für Metallkunde e.V,1985:1759-1766.
[20] M. Es-Souni .Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti-5.8Al-4.0Sn-3.5Zr-0.7Nb-0.35Si-0.06C (Timetal 834) Part I. Primary and steady-state creep[J].Materials Characterization,2001(5):365-379.
[21] 冯端.金属物理学第一卷,结构与缺陷[M].北京:科学出版社,1998:540.
[22] NAKAJIMA H;KOIWA M .Diffusion in titanium[J].ISIJ International,1991,31(08):757-766.
[23] NAKAJIMA H;OGASAWARA K;YAMAGUCHI S et al.Diffusion of chromium in α-titanium and its alloys[J].Materials Transactions-Japan Institute of Metals,1990,31(04):249-254.
[24] G. B. Viswanathan;S. Karthikeyan;R. W. Hayes Metals Technology Inc. Northridge CA 91324 USA;M. J. Mills .Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation[J].Acta materialia,2002(20):4965-4980.
[25] BLENKINSOP P A;NEAL D F.High temperature titanium alloys:the metallurgical understanding,development and achievements of conventional alloys[A].Chiba,Japan:Metals & Materials Society,1994:19-27.
[26] RUSSO P A;WOOD J R.Influence of Ni and Fe on the creep of beta annealed Ti-6242S[A].Birmingham,UK:The Institute of Materials,1996:1075-1082.
[27] PARADKAR A G;RAO A V;GOGIA A K .Effect of microalloying in a near α titanium alloy[J].Transactions of the Indian Institute of Metals,2000,53(03):231-242.
[28] XU D S;HU Q M;LU J M.Point defects and mechanical behavior of titanium alloys and intermetallic compounds[A].北京:中国科学院,2006:220-227.
[29] 莫畏.钛[M].北京:冶金工业出版社,2008
[30] H. Mishra;P. Ghosal;T.K. Nandy;P.K. Sagar .Influence of Fe and Ni on creep of near α-Ti alloy IMI834[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):222-231.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%