欢迎登录材料期刊网

材料期刊网

高级检索

通过光学、透射电子显微、蠕变与室温拉伸实验研究了2124铝合金板的蠕变时效行为与力学性能.结果表明:185℃/150MPa条件下,经固溶-淬火处理(QCA)板材的蠕变机制从位错增殖发展为位错增殖-消毁平衡,其蠕变曲线第一阶段与第二阶段分界点较为明显;而经固溶-淬火-预压缩处理(PCA)板材的蠕变机制主要为预压缩引入的位错消毁,蠕变曲线第一阶段特征并不明显.蠕变时效过程中,S'相的析出总是伴随着位错线形核,其析出方位受位错运动机制的影响,PCA处理初期,经预压缩引入的位错缠结使S'相可以在互相垂直的{210}面上析出,从而抑制了S '相的位向效应.PCA处理试样的力学性能优于该合金的T6和T87状态的,且各向异性小于QCA处理的.

参考文献

[1] TAKAFUMI A;SHIROU K;TAKAHIRO N et al.Age form ing technology for aircraft wing skin[J].Materials Forum,2004,28:202-207.
[2] HOLMAN M C .Autoclave age forming large aluminium aircraft panels[J].Journal of Mechanical Working Technology,1989,20(09):477-488.
[3] Ho KC.;Lin J.;Dean TA. .Modelling of springback in creep forming thick aluminum sheets[J].International Journal of Plasticity,2004(4-5):733-751.
[4] 楼瑞祥.大飞机用铝合金的现状与发展趋势[C].大型飞机关键技术高层论坛暨中国航空学会2007年年会论文集,2007:673-680.
[5] F. Eberl;S. Gardiner;G. Campanile;G. Surdon;M. Venmans;P. Prangnell .Ageformable panels for commercial aircraft[J].Proceedings of the Institution of Mechanical Engineers, Part G. Journal of aerospace engineering,2008(g6):873-886.
[6] Liu YB;Liu ZY;Li YT;Xia QK;Zhou J .Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):333-336.
[7] N. Kamp;N. Gao;M.J. Starink .Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys[J].International Journal of Fatigue,2007(5):869-878.
[8] PAREL T S;WANG S C;STARINK M J .Hardening of an AlCu-Mg alloy containing types Ⅰ and Ⅱ S phase precipitates[J].Materials & Design,2010,31(01):s2-s5.
[9] S.C. Wang;M.J. Starink .Two types of S phase precipitates in Al-Cu-Mg alloys[J].Acta materialia,2007(3):933-941.
[10] 孙志强,周文龙,陈国清,黄遐,曾元松.时效成形对2324铝合金组织及性能的影响[J].材料工程,2009(10):73-76,80.
[11] BAKAVOS D;PRANGNELL P B;DIF R .A comparison of the effects of age forming on the precipitation behaviour in 2xxx,6xxx and 7xxx aerospace alloys[J].Materials Forum,2004,28:124-131.
[12] 邓运来,周亮,晋坤,张新明.2124铝合金蠕变时效的微结构与性能[J].中国有色金属学报,2010(11):2106-2111.
[13] WETMAN G .Concrete creep and thermal stresses:new creep models and their effects on stress development[D].Sweden:Lulea University of Technology,1999.
[14] STARINK M J;GAO N;KAMP N et al.Relations between microstructure,precipitation,age formability and damage toler anee of Al-Cu-Mg-Li(Mn,Zr,Sc) alloys for age forming[J].Materials Science and Engineering A,2006,418(1-2):241-249.
[15] HAN-CHENG SHIH;NEW-JIN HO;J.C. HUANG .Precipitation Behaviors in Al-Cu-Mg and 2024 Aluminum Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1996(9):2479-2494.
[16] YONG LI;STEVEN R.NUTT;FARGHALLI A.MOHAMED .AN INVESTIGATION OF CREEP AND SUBSTRUCTURE FORMATION IN 2124 Al[J].Acta materialia,1997(6):2607-2620.
[17] 王祝堂;田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,1999
[18] JATA K V;HOPKINS A K;RIOJA R J .The anisotropy and texture of Al-Li alloys[J].Materials Science Forum,1996,217-222:647-652.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%