欢迎登录材料期刊网

材料期刊网

高级检索

基于Gleeble-1500热模拟机测定的AZ31镁合金热压缩实验数据,通过BP神经网络对数据进行训练,建立了流变应力与应变、应变速率和温度相对应的预测模型,采用该模型的预测数据构造了AZ31的加工图.结果表明:AZ31流变失稳区分布在低温高应变速率区和中温较低应变速率区,当温度为340~440℃、应变速率为0.01~0.02s-1时功率耗散因子较大,为加工性较好的区域;利用经过训练的神经网络模型,流变应力的网络预测值与实验值能够很好地吻合,其最大相对误差为6.67%;不同变形条件绘制的加工图表明AZ31是应变不敏感、但对温度和应变速率敏感的材料.

参考文献

[1] T. Al-Samman;G. Gottstein .Dynamic recrystallization during high temperature deformation of magnesium[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):411-420.
[2] 李成侣,潘清林,刘晓艳,何运斌,李文斌.2124铝合金的热压缩变形和加工图[J].材料工程,2010(04):10-14.
[3] PRASAD Y V R K;GEGEL H L;DORAIVELU S M et al.Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J].Metallurgical Transactions A,1984,15(10):1883-1892.
[4] Prasad YVRK;Rao KP .Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950 degrees C[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):141-150.
[5] Y.V.R.K. Prasad;K.P. Rao .Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):316-327.
[6] G. Ganesan;K. Raghukandan;R. Karthikeyan .Development of processing map for 6061 Al/15 percent SICP through neural networks[J].Journal of Materials Processing Technology,2005(3):423-429.
[7] 张凯锋,尹德良,王国峰,韩文波.热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为[J].航空材料学报,2005(01):5-10.
[8] LEE S;CHEN Y H;WANG J Y .Isothermal sheet metal formability of magnesium alloy AZ31 and AZ61[J].Journal of Materials Processing Technology,2002,124(1-2):19-24.
[9] 余琨,蔡志勇,王晓艳,史蜒,黎文献.半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J].材料工程,2010(09):33-39.
[10] H. Y. Kim;H. C. Kwon;H. W. Lee;Y. T. Im;S. M. Byon;H. D. Park .Processing map approach for surface defect prediction in the hot bar rolling[J].Journal of Materials Processing Technology,2008(1/3):70-80.
[11] NARAYANA MURTY S V S;NAGESWARA RAO B .On the development of instability criteria during hotworking with reference to IN718[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,1998,254(1-2):7682.
[12] Srinivasan N;Prasad YVRK;Rao PR .Hot deformation behaviour of Mg-3Al alloy - A study using processing map[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):146-156.
[13] PRASAD Y V R K;SASIDHARA S.Hot Working Guide:a Compendium of Processing Maps[M].OH:ASM International,Metals Park,1997
[14] 蒋宗礼.人工神经网络导论[M].北京:高等教育出版社,2001:39-48.
[15] Cavaliere P .Flow curve prediction of an Al-MMC under hot working conditions using neural networks[J].Computational Materials Science,2007(4):722-726.
[16] REDDY N S;LEE Y H;PARK C H et al.Prediction of flow stress in Ti-6AL-4V alloy with an equiaxed α+β microstrueture by artificial neural networks[J].Mater Sci Eng:A,2008,492(1-2):276282.
[17] Lin YC;Zhang J;Zhong J .Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J].Computational Materials Science,2008(4):752-758.
[18] 赖静 .含氢BT20合金热变形流变应力和组织演变的ANN模型[D].哈尔滨:哈尔滨工业大学,2006.
[19] 王春水,彭志方,于洋洋.人工神经网络预测变形高温合金的持久强度[J].金属学报,2003(12):1251-1254.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%