欢迎登录材料期刊网

材料期刊网

高级检索

较大塑性变形下,采用TEM原位拉伸实验揭示了纳晶镍内剪切带演化的微观机制,优化了微观力学模型.结果表明:在纳米尺度范围内,随着晶粒尺寸的增加,应变软化的趋势越来越明显,剪切带宽度也随着增加;晶粒尺寸降低将导致纳晶材料中剪切带的产生提前;内部特征长度的值随着晶粒尺寸的增加呈现先增加后下降的特点;剪切带内的塑性应变分布为:在剪切带两个边界处应变为零,在剪切带中央剪切塑性应变达到最大值.

参考文献

[1] 周宇松,吴希俊,许国良,李冰寒,张鸿飞,杜黎光,李宗全.大尺寸纳米铜和银的制备及其微观缺陷与力学性能[J].中国有色金属学报,2000(04):465.
[2] 周宇松,吴希俊.纳米金属的力学性能[J].力学进展,2001(01):62-69.
[3] J. R. Weertman;D. Farkas;K. Hemker .Structure and Mechanical Behavior of bulk Nanocrystalline Materials[J].MRS bulletin,1999(2):44-50.
[4] 卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报,2000(08):785-789.
[5] R. Schwaiger;B. Moser;M. Dao .Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J].Acta materialia,2003(17):5159-5172.
[6] S. Cheng;E. Ma;Y. M. Wang .Tensile properties of in situ consolidated nanocrystalline Cu[J].Acta materialia,2005(5):1521-1533.
[7] F. Dalla Torre;H. Van Swygenhoven;M. Victoria .Nanocrystalline electrodeposited Ni: microstructure and tensile properties[J].Acta materialia,2002(15):3957-3970.
[8] Aji A. Anappara;S. K. Ghosh;P. R. S. Warrier;K. G. K. Warrier;W. Wunderlich .Impedance spectral studies of sol-gel alumina-silver nanocomposites[J].Acta materialia,2003(12):3511-3519.
[9] Q. Wei;D. Jia;K. T. Ramesh;E. Ma .Evolution and microstructure of shear bands in nanostructured Fe[J].Applied physics letters,2002(7):1240-1242.
[10] Panin, AV;Panina, AA;Ivanov, YF .Deformation macrolocalisation and fracture in ultrafine-grained armco iron[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):267-272.
[11] J.E.Carsley .Mechanical Behavior of a Bulk Nanostructured Iron Alloy[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1998(9):2261-2272.
[12] P.C. HUNG;P.L. SUN;C.Y. YU .Inhomogeneous Tensile Deformation in Ultrafine-Grained Aluminum[J].Scripta materialia,2005(6):647-652.
[13] Sansoz F;Dupont V .Atomic mechanism of shear localization during indentation of a nanostructured metal[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2007(5/8):1509-1513.
[14] Hsueh-Hung Fu;David J. Benson;Marc Andre Meyers .Computational description of nanocrystalline deformation based on crystal plasticity[J].Acta materialia,2004(15):4413-4425.
[15] Y.J. Wei;L. Anand .Grain-boundary sliding and separation in poly crystalline metals: application to nanocrystalline fee metals[J].Journal of the Mechanics and Physics of Solids,2004(11):2587-2616.
[16] Warner DH;Sansoz F;Molinari JF .Atomistic based continuum investigation of plastic deformation in nanocrystalline copper[J].International Journal of Plasticity,2006(4):754-774.
[17] P.G.Sanders;J.A.Eastman;J.R.Weertman .Elastic and tensile behavior of nanocrystalline copper and palladium[J].Acta materialia,1997(10):4019-4025.
[18] KOCH C C .Ductility in nanostructured and ultra fine-grained materials:recent evidence for optimism[J].Journal of Metastable and Nanocrystalline Materials,2003,18:9-19.
[19] I.A. Ovid'ko;A.G. Sheinerman .Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes[J].Acta materialia,2009(7):2217-2228.
[20] Yujie Wei;Allan F. Bower;Huajian Gao .Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding[J].Acta materialia,2008(8):1741-1752.
[21] Wei YJ;Su C;Anand L .A computational study of the mechanical behavior of nanocrystalline fcc metals[J].Acta materialia,2006(12):3177-3190.
[22] B. Zhu;R. J. Asaro;P. Krysl .Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals[J].Acta materialia,2005(18):4825-4838.
[23] Kim HS;Estrin Y .Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials[J].Acta materialia,2005(3):765-772.
[24] Q. Wei;S. Cheng;K.T. Ramesh;E. Ma .Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):71-79.
[25] Capolungo L;Cherkaoui M;Qu J .On the elastic-viscoplastic behavior of nanocrystalline materials[J].International Journal of Plasticity,2007(4):561-591.
[26] U. F. Kocks;H. Mecking .Physics and phenomenology of strain hardening: the FCC case[J].Progress in materials science,2003(3):171-273.
[27] Gutkin MY;Ovid'ko IA .Grain boundary migration as rotational deformation mode in nanocrystalline materials[J].Applied physics letters,2005(25):51916-1-51916-3-0.
[28] ASHBY M F;VERRALL R A .Diffusion-accommodated flow and superplasticity[J].Acta Metallurgica,1973,21(02):149-163.
[29] D. S. Gianola;S. Van Petegem;M. Legros .Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films[J].Acta materialia,2006(8):2253-2263.
[30] D. Farkas;A. Fraseth;H. Van Swygenhoven .Grain boundary migration during room temperature deformation of nano- crystalline Ni[J].Scripta materialia,2006(8):695-698.
[31] Romanov, AE;Kolesnikova, AL;Ovid'ko, IA;Aifantis, EC .Disclinations in nanocrystalline materials: Manifestation of the relay mechanism of plastic deformation[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):62-67.
[32] Allan F. Bower;Emeric Wininger .A two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation[J].Journal of the Mechanics and Physics of Solids,2004(6):1289-1317.
[33] A.A. Fedorov;M.Yu. Gutkin;I.A. Ovid'ko .Transformations of grain boundary dislocation pile-ups in nano-and polycrystalline materials[J].Acta materialia,2003(4):887-898.
[34] Harm Askes;Jerzy Pamin;Rene de Borst .Dispersion analysis and element-free Galerkin solutions of second- and fourth-order gradient-enhanced damage models[J].International Journal for Numerical Methods in Engineering,2000(6):811-832.
[35] Lu Ma;Jianqiu Zhou;Rongtao Zhu;Shun Li .Effects of strain gradient on the mechanical behaviors of nanocrystallinematerials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2009(1/2):42-49.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%