欢迎登录材料期刊网

材料期刊网

高级检索

首次在室温条件下超声方法直接将金属Zn制备ZnO纳米颗粒薄膜.利用滚压振动磨机械研磨的Zn粉作为原料,采用独特的油相水相混合溶液作为分散液,超声分散打破软团聚使金属Zn纳米颗粒水解得到了分散性较好的纳米粒子,并且可以利用该纳米粒子简单地制备出均匀致密的ZnO纳米粒子薄膜.利用X射线粉末衍射仪(XRD)、透射电子显微镜(TEM)对产物进行了表征.结果表明,采用该方法可制得具有密排六方结构的ZnO纳米颗粒,并且该产物分散较好.原子力显微镜(AFM)、静电力显微镜(EFM)表明利用该纳米粒子制备的薄膜致密均匀,EFM显示纳米粒子表面电学性质有较大差异.探针台I-V测试显示不同原料Zn粉制备出的ZnO纳米颗粒薄膜可以获得不同导通电压从而获得不同的整流效果.该方法在室温条件下由Zn粉制备出ZnO纳米颗粒和薄膜,为制备不同维度ZnO纳米结构提供了新思路,同时也为制备、改善整流器件提供了创新和经济的途径.

参考文献

[1] 薛华,徐小丽,陈彦,张国恒,马书懿.纳米ZnO镶嵌SiO2薄膜的光学特性研究[J].功能材料,2009(04):700-703.
[2] 列光华,唐志列,杨挺,唐秀文.用光声技术研究半导体TiO2,ZnO纳米晶粉的光学特性[J].光谱学与光谱分析,2011(01):51-54.
[3] Pohl DW. .NEAR-FIELD OPTICS - LIGHT FOR THE WORLD OF NANO-SCALE SCIENCE[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,1995(2):250-254.
[4] 云斯宁,孙毅,甘艳萍,李玉祥.A1-ZnO光电纳米材料的水热合成及电学性能[J].硅酸盐学报,2012(02):294-299.
[5] Yun, S.;Lee, J.;Chung, J.;Lim, S. .Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping[J].The journal of physics and chemistry of solids,2010(12):1724-1731.
[6] 徐国荣,李从举.Fe/Co-Ti-O纳米纤维的制备、光催化性能和磁学性能[J].环境化学,2011(03):616-621.
[7] 陆海鹏,韩满贵,邓龙江,梁迪飞,欧雨.Co纳米线磁矩反转动态过程的有限元微磁学模拟[J].物理学报,2010(03):2090-2096.
[8] 杨若欣,刘建科,史永胜.不同衬底上ZnO:Al透明导电薄膜的性能[J].硅酸盐学报,2012(03):408-411.
[9] Quan-Bao Ma;Zhi-Zhen Ye;Hai-Ping He .Preparation and characterization of transparent conductive ZnO:Ga films by DC reactive magnetron sputtering[J].Materials Characterization,2008(2):124-128.
[10] 陈培荣,王滨,姚洪章,林华峰,黄勃,李增智.纳米ZnO对白僵菌孢子的紫外保护及与孢子的生物相容性[J].高等学校化学学报,2010(12):2322-2328.
[11] 余长林,杨凯,周轶,李立清.一种银掺杂的ZnO/ZnSnO3复合光催化剂的制备及其光催化性能[J].功能材料,2011(z3):435-437.
[12] C.Besleaga;G.E. Stan;A.C.Galca;L. Ion;S. Antohe .Double layer structure of ZnO thin films deposited by RF-magnetron sputtering on glass substrate[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2012(22):8819-8824.
[13] 夏齐萍,汪小小,吕建国,宋学萍,孙兆奇.射频反应磁控溅射制备ZnO薄膜的微结构及其光学性能[J].人工晶体学报,2011(02):430-434.
[14] A. Illiberi;P.J.P.M. Simons;B. Kniknie;J. van Deelen;M. Theelen;M. Zeman;M. Tijssen;W. Zijlmans;H.L.A.H. Steijvers;D. Habets;A.C. Janssen;E.H.A. Beckers .Growth of ZnO_x:Al by high-throughput CVD at atmospheric pressure[J].Journal of Crystal Growth,2012(1):56-61.
[15] Zhaoyang, W.;Liyuan, S.;Lizhong, H. .Effect of laser repetition frequency on the structural and optical properties of ZnO thin films by PLD[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,2010(3):397-399.
[16] Nistor M;Mandache N B;Perriere J et al.Growth,structure and electrical properties of ZnO thin films in MgO(100) substrates[J].Physical Status Solidi B Basic Research,2011,519:3959-3964.
[17] Oyola, J.S.;Castro, J.M.;Gordillo, G..ZnO films grown using a novel procedure based on the reactive evaporation method[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2012:137-141.
[18] Canyun Zhang .High-qualityorientedZnOfilmsgrownbysol–gelprocessassistedwithZnO seed layer[J].The journal of physics and chemistry of solids,2010(3):364-369.
[19] 李琛,周明,沈坚.水热法制备不同形貌的氧化锌纳米结构[J].功能材料,2011(07):1327-1331.
[20] 孙成伟,刘志文,张庆瑜.退火温度对ZnO薄膜结构和发光特性的影响[J].物理学报,2006(01):430-436.
[21] Li T;Fan H M;Xue J M et al.Synthesis of highlytextured ZnO films on different substrates by hydrothermal route[J].Thin Solid Films,2010,518:e114-e117.
[22] 肖立娟,李长山,郝嘉伟,赵鹤平.不同缓冲层对Al掺杂ZnO薄膜性能的影响[J].功能材料与器件学报,2012(02):138-141.
[23] Wang Shulin.Impact chaos control and stress release -A key for development of ultra fine vibration milling[J].自然科学进展(英文版),2002(05):336-341.
[24] 李国栋.氧化物超细粉团聚机理研究[J].硅酸盐学报,2002(05):645-648.
[25] 滕洪辉,徐淑坤,王猛.微乳液法合成不同维度氧化锌纳米材料及其光催化活性[J].无机材料学报,2010(10):1034-1040.
[26] ChangChun Chen;Ping Liu;ChunHua Lu .Synthesis and characterization of nano-sized ZnO powders by direct precipitation method[J].Chemical engineering journal,2008(3):509-513.
[27] 李先红,李国栋.干态纳米分散技术及其机理研究[J].材料导报,2007(07):90-92,100.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%