欢迎登录材料期刊网

材料期刊网

高级检索

通过在阳极氧化液中添加纳米A12 O3,在镁合金表面制备了复合阳极氧化膜.采用扫描电镜、能谱仪、动电位极化测试以及往复摩擦磨损实验研究了纳米Al2 O3的添加量对阳极氧化过程、形貌及氧化膜性能的影响.结果表明,纳米颗粒的加入,增大了溶液电阻,从而使得成膜电压提高.纳米粉末的添加量与复合氧化膜的性能没有线性相关性.当电解液纳米颗粒的浓度为10g/L时,可以获得表面光滑平整、孔径细小均匀的复合氧化膜,此时复合氧化膜具有最优的耐蚀性和耐磨性能.

参考文献

[1] Lee YK;Lee K;Jung T .Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution[J].Electrochemistry communications,2008(11):1716-1719.
[2] Salih Durdu;Metin Usta.Characterization and mechanical properties of coatings on magnesium by micro arc oxidation[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2012:774-782.
[3] 刘蒙恩,盛光敏,尹丽晶.高能喷丸对AZ31镁合金耐腐蚀性及硬度的影响[J].功能材料,2012(19):2702-2704,2709.
[4] Kainer K U.Magnesium alloys and technology[M].Heppenheim:WILEY-VCH Verlag GmbH & Co.KG aA,Weinheim,2003:218.
[5] J.E. Gray;B. Luan .Protective coatings on magnesium and its alloys-a critical review[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2002(1/2):88-113.
[6] Zhu P;Zhou M;Wu J H et al.Method of direct electrodeposited zinc-nickel alloy on magnesium alloy[P].CN patent:200710037391.4,2007-02-09.
[7] WU Li-ping,ZHAO Jing-jing,XIE Yong-ping,YANG Zhong-dong.Progress of electroplating and electroless plating on magnesium alloy[J].中国有色金属学报(英文版),2010(z2):630-637.
[8] 朱立群,刘慧丛.溶胶成分对镁合金阳极氧化膜层的影响研究[J].功能材料,2005(06):923-926.
[9] Zhao M;Wu SS;Luo JR;Fukuda Y;Nakae H .A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution[J].Surface & Coatings Technology,2006(18/19):5407-5412.
[10] Hikmet Altun;Sadri Sen .The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy[J].Materials & Design,2006,27:1174-1179.
[11] Bernabe Carcel;Jesus Sampedro;Ana Ruescas et al.Corrosion and wear resistance improvement of magnesium alloys by laser cladding with A1-Si[J].Physics Procedia,2011,12:353-363.
[12] Zeng X Y;Kuang Y F;Zeng L S .Effects of insoluble powdersadded in H3SO4 bath solution on performanceof anodized aluminum[J].Materials Protection,1998,31:7-8.
[13] Suiyuan Chen;Chen Kang;Jing Wang;Changsheng Liu;Kai Sun .Synthesis of anodizing composite films containing superfine Al_2O_3 and PTFE particles on Al alloys[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2010(22):6518-6525.
[14] Liang Jun;Hu Litian;Hao Jingcheng .Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation[J].Electrochimica Acta,2007,52:4836-4840.
[15] Liu S Y;Zhang H C;Gao X M et al.Study of composite hard anodizing of aluminum alloy 6063 and its friction behaviors[J].Light Alloy Fabrication Technol,2004,32:42-45.
[16] 沈远香,黄晓霞.镁合金表面处理新技术及发展方向[J].四川兵工学报,2010(05):60-62.
[17] Lee, K.M.;Shin, K.R.;Namgung, S.;Yoo, B.;Shin, D.H. .Electrochemical response of ZrO_2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation[J].Surface & Coatings Technology,2011(13/14):3779-3784.
[18] Vijh A K .Sparking voltages and side reactions during anodization of valve metals in terms of electron tunneling[J].Corrosion Science,1971,11:411-417.
[19] Wood G C;Pearson C .Short communication of dielectric breakdown of anodic oxide films on valve metal[J].Corrosion Science,1967,7:119-125.
[20] Yahalom J;Hoar T P .Galvanostatic anodizing of aluminum[J].Electrochimica Acta,1970,15:877-884.
[21] Burger F J;Wu J C .Dielectric breakdown in electrolytic capacitors[J].Journal of the Electrochemical Society,1971,118(12):2039-2042.
[22] Ikonopisov S .Theory of electrical breakdown during formation of barrier anodic films[J].Electrochimica Acta,1977,22:1077-1082.
[23] Burger F J;Wu J C .Dielectric breakdown in electrolytic capacitors[J].Journal of the Electrochemical Society,1971,118:2039-2042.
[24] 张荣发,廖爱娣,张淑芳,李明杰,史兴梅,王海霞,贾志翔,王丽君,刘利伟.环保型电解质对溶液电导率的影响[J].中国有色金属学报,2011(04):927-931.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%