欢迎登录材料期刊网

材料期刊网

高级检索

Cu-Cr-Zr系合金是一类高强度高导电集成电路用引线框架铜合金.在Gleeble-1500D热模拟实验机上,采用等温压缩实验研究了Cu-Cr-Zr-Ce合金在变形温度为600~800℃、应变速率为0.01~5s-1条件下的流变应力的相互变化规律,测定了其真应力-应变曲线,并利用光学显微镜分析了合金在热压缩过程中的组织演变规律.结果表明,Cu-Cr-Zr-Ce合金的真应力-真应变曲线呈现典型的动态回复特征,其流变应力和峰值应力随变形温度的降低和应变速率的提高而增大;且变形温度越高,应变速率越小,合金越容易发生动态回复和再结晶.在上述实验基础上,基于流变应力、应变速率和温度的相关性,计算出了该合金热压缩变形时的热变形激活能Q,并建立了其等温压缩塑性变形过程的流变应力与变形温度和应变速率之间关系的本构方程.

参考文献

[1] Mitchell N. .Conductor designs for the ITER toroidal and poloidal magnet systems[J].IEEE Transactions on Magnetics,1994(4):1602-1607.
[2] 赵冬梅,董企铭,刘平,金志浩,黄金亮.铜合金引线框架材料的发展*[J].材料导报,2001(05):18-20.
[3] 于朝清.引线框架用高强高导铜合金材料[J].电工材料,2005(02):33-37,43.
[4] 金恒阁,宋斌,于立波,王富国,赵来胜.CU-Ti-Sn-Cr结晶器铜套的研制[J].特种铸造及有色合金,2001(06):39-40.
[5] D. H. He;R. R. Manory;N. Gardy .Wear of railway contact wires against current collector materials[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,1998(1/2):146-155.
[6] 刘平.高性能铜合金的热处理及其加工技术[J].金属热处理,2005(z1):1-7.
[7] 赵冬梅,董企铭,刘平,康布熙,黄金亮,金志浩.Aging transformation in Cu-3.2Ni-0.75Si alloy[J].中国有色金属学会会刊(英文版),2003(02):258-261.
[8] 赵美,林国标,王自东,程智刚.Cu-Cr-Zr-si合金的时效析出行为研究[J].热加工工艺,2008(16):31-33.
[9] 马旭,王顺兴,刘勇,王姗姗.变形量对Cu-Cr-Zr合金等温时效动力学的影响[J].热加工工艺,2009(08):10-12.
[10] 温盛发,周海涛,刘克明,刘志超.Cu-1.0Cr-0.2Zr合金的时效析出研究[J].热加工工艺,2010(12):113-116,122.
[11] Galiyev A;Kaibyshev R;Cottstein G .[J].Acta Materialia,2001,49(07):1199.
[12] 范莉,刘平,贾淑果,田保红,于志生.集成电路用Cu-Ni-Si-Cr合金流变应力行为研究[J].特种铸造及有色合金,2009(03):283-285.
[13] 易丹青,杨伏良.6013铝合金热变形行为及力学性能研究[C].Lw2007铝型材技术(国际)论坛论文汇编,2007:123-127.
[14] 胡赓祥;蔡珣;戎咏华.材料科学基础[M].上海:上海交通大学出版社,2009:106-108,211-214.
[15] 刘 平;苏娟华.新型铜铬系合金及其制备技术[M].北京:科学出版社,2007:5.
[16] Garofalo F .An empirical relation refining the stress dependence of minimum creep rate in metals[J].Transactions of the Metallurgical Society of AIME,1963,227(02):351-355.
[17] Huizhong Li;Zhou Li;Min Song;Xiaopeng Liang;Feifei Guo .Hot deformation behavior and microstructural evolution of Ag-containing 2519 aluminum alloy[J].Materials & design,2010(4):2171-2176.
[18] Momeni, A.;Dehghani, K. .Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(21/22):5467-5473.
[19] Nengping Jin;Hui Zhang;Yi Han .Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature[J].Materials Characterization,2009(6):530-536.
[20] Deng, Y.;Yin, Z.;Huang, J. .Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(3):1780-1786.
[21] Mcqueen H J;Yue S;Ryan N D .Hot working characteristics of steels in austenitic state[J].Journal of Materials Processing Technology,1995,53:293.
[22] Sellars C M;Mctegart W J .On the mechanism of hot deformation[J].Acta Metallurgica,1966,14:1136-1138.
[23] Zenergy C;Hollomon J H .Effect of strain-rate upon the plastic flow of stell[J].Journal of Applied Physics,1944,15(01):22-27.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%