欢迎登录材料期刊网

材料期刊网

高级检索

为考察铝土矿生物浸出脱硅的机制,比较了硅酸盐细菌JY03在细菌-矿物接触/非接触模式下与铝土矿的作用,分析浸出过程中铝土矿表面形成的生物膜与钝化膜对溶硅的影响。结果表明,在细菌浸出的前期(0~6 d),铝土矿表面生物膜与钝化膜还未形成,Al与Si的溶出主要受间接接触模式的影响;在6~12 d内,铝土矿表面的生物膜逐渐显现,Si 的溶出速率明显较非接触模式快,Si 的溶出主要受接触模式的影响,12d后,浸出液中 SiO2的浓度高于非接触模式17mg/L左右;在8~12d,Al2 O3沉淀产生,接触模式下Al的溶出速率明显变缓,非接触模式下明显下降;浸矿12d 后,Al2 O3絮凝沉淀在铝土矿表面形成钝化膜,浸出液中 Al2 O3浓度显著下降,SiO2的浓度达到最大值并趋于稳定。因此可以认为,生物膜的形成有利于细菌浸矿溶硅,钝化膜则抑制Al与Si的溶出。

To study desilication mechanism of bauxite bioleaching,the interaction were compared between the silicate bacterium JY03 and bauxite under the microbe-mineral contact/noncontact modes,and the effects of biofilm and passivation coating forming on the bauxite surface in bioleaching system were investigated.The re-sults show that:in initial step of bioleaching(0-6 d),the bauxite surface were not coated by biofilm and passiva-tion coating,and the dissolution approach of Al and Si was mainly under indirect contact mode;6-12d,as the biofilm formed gradually on the bauxite surface,the dissolution rate of Si was mainly under contact mode,sig-nificantly higher than indirect contact mode;after a 12d leaching,the concentration of SiO2 in the leaching solu-tion of contact model was about 17mg/L higher than that in the indirect contact model;in 8-12d,as Al2 O3 sedi-ment was forming,Al dissolution rate slows significantly in contact system,and decreased in indirect-contact system;after 12d-leaching,when a passive film was formed on the bauxite surface by flocculation and sedimen-tation of Al2 O3 ,the Al2 O3 concentration in the leaching solution was decreased significantly,and SiO2 concen-tration reaches a maximum and stabilized.It is concluded that Si,Al dissolution can be promoted by biofilm and inhibited by Al2 O3 passivation coating.

参考文献

[1] Brierley C L .Biohydrometallurgical prospects[J].Hy-drometallurgy,2010,104(03):216-221.
[2] 王瑞兴,钱春香,吴淼,成亮.微生物矿化固结土壤中重金属研究[J].功能材料,2007(09):1523-1526,1530.
[3] 钮因健,邱冠周,周吉奎,覃文庆.硅酸盐细菌的选育及铝土矿细菌脱硅效果[J].中国有色金属学报,2004(02):280-285.
[4] Lian Bin;Smith D L;Fu Pingqiu .Application and mech-anism of silicate bacteria in agriculture and industry[J].Guizhou Science in China,2000,18(1-2):44-53.
[5] Zhou Guohua;Xue Yulan;Jiang Yuren et al.Discussion of bauxite dressing by microorganisms[J].Multipurpose Utilization of Mineral Resources,2000,12(06):38-40.
[6] Mark Dopson;Lars Lovgren;Dan Bostrom .Silicate mineral dissolution in the presence of acidophilic microorganisms: Implications for heap bioleaching[J].Hydrometallurgy,2009(4):288-293.
[7] Mockovciakova A;Iveta S;Jiri S et al.Characterization of changes of low and high defect kaolinite after bioleach-ing[J].Applied Clay Science,2008,39(3-4):451-455.
[8] Groudrev S .Use of heterotrophic microorganisms in min-eral biotechnology[J].Acta Biotechnologica,1987,7(04):299-306.
[9] Andreev P I;Andreeva G S;Sidyakina G G.Bioflotation:its possibilities and prospects[J].Razued Okhr Nedr,1992(02):27-28.
[10] 周跃飞,王汝成,陆现彩,陆建军.微生物-矿物接触模式影响矿物溶解机制的实验研究--以多粘芽孢杆菌参与下的微纹长石溶解为例[J].高校地质学报,2007(04):657-661.
[11] 莫彬彬,连宾.长石风化作用及影响因素分析[J].地学前缘,2010(03):281-289.
[12] 陆现彩,屠博文,朱婷婷,李娟,王朝华,周跃飞,赵兴青,陆建军,王汝成.风化过程中矿物表面微生物附着现象及意义[J].高校地质学报,2011(01):21-28.
[13] 孙德四,张贤珍,张强.硅酸盐细菌代谢产物对硅酸盐矿物的浸溶作用研究[J].矿冶工程,2006(03):27-29,34.
[14] Yuefei ZHOU,Rucheng WANG,Xiancai LU,Tianhu CHEN.Roles of adhered Paenibacillus polymyxa in the dissolution and flotation of bauxite: a dialytic investigation[J].地球科学前沿,2010(02):167-173.
[15] Natarajan A.;Modak J.M. .Some microbiological aspects of bauxite mineralization and beneficiation[J].Minerals & Metallurgical Processing,1997(2):47-50.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%