欢迎登录材料期刊网

材料期刊网

高级检索

以杉木为原料,经苯酚液化、熔融纺丝、固化处理后,CO2活化制备出木质活性炭纤维,利用扫描电镜、拉曼光谱、比表面积测定对其形态结构进行了表征,并研究了活化工艺因素对其碘吸附性能的影响。结果表明,木质活性炭纤维的表面平滑,断面呈圆形;500℃以上的木质活性炭纤维拉曼图谱都出现炭材料典型的D峰和G 峰,且随着活化温度的提高,其石墨微晶尺寸La 逐渐增大,R 值逐渐减小;木质活性炭纤维的孔结构主要以微孔为主,其微孔率达到90%,只存在少许的中孔结构。随活化温度和活化剂用量的增加,木质活性炭纤维的碘吸附值明显增加,其收率随活化温度的升高呈现降低趋势;当活化时间增加到40min时,木质活性炭纤维的碘吸附值达到最大,而后降低。

After melt-spinning by adding hexamethylenetetramine and the curing treatment,wooden activated carbon fibers are prepared from the phenolated Chinese fir (cunninghamia lanceolata)using CO2 activation,the microstructure characterization was investigated by SEM,Raman spectroscopy and BET specific surface area, and the effects of activation processes on iodine adsorption properties also are studied.The results show that wooden activated carbon fibers have smooth surface and a circular cross-section;when activating temperature reaches 500℃,Raman spectroscopy shows typical D peak and G peak of carbon materials,and the crystallite si-zes La increases and the value of the disordering R decreases with the activating temperature increasing;wooden activated carbon fibers have the highest micropores content of 90% and a little mesopores.Iodine adsorption of wooden activated carbon fibers increases significantly with the activating temperature and the flow rate of CO2 increasing,but the yield decreases with the activating temperature;iodine adsorption of wooden activated car-bon fibers was found to be maximum at the activating time 40min and then fall.

参考文献

[1] Shen Zengmin.New carbon materials[M].Beijing:Chemi-cal Industry Press,2003:56.
[2] Uraki Y;Nakatani A;Kubo S et al.Preparation of acti-vated carbon fibers with large specific surface area from softwood acetic acid lignin[J].Journal of Wood Science,2001,47:465-469.
[3] Asakura R.;Morita M.;Maruyama K.;Hatori H.;Yamada Y. .Preparation of fibrous activated carbons from wood fiber[J].Journal of Materials Science,2004(1):201-206.
[4] Senthilkumaar S;Varadarajan PR;Porkodi K;Subbhuraam C .Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies[J].Journal of Colloid and Interface Science,2005(1):78-82.
[5] N.H. Phan;S. Rio;C. Faur .Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(12):2569-2577.
[6] Ma Xiaojun;Zhao Guangjie .Preparation of carbon fibers from liquefied wood[J].Wood science and technology,2010(1):3.
[7] 马晓军,赵广杰,刘辛燕,于丽丽.炭化温度对木材液化物碳纤维吸附特性及孔结构的影响[J].功能材料,2011(10):1746-1749.
[8] Tuinstra F;Koenig J L .Raman spectrum of graphite[J].Journal of Chemical Physics,1970,53(03):1126-1130.
[9] Melanitis N.;Galiotis C.;Tetlow PL. .CHARACTERIZATION OF PAN-BASED CARBON FIBRES WITH LASER RAMAN SPECTROSCOPY .1. EFFECT OF PROCESSING VARIABLES ON RAMAN BAND PROFILES[J].Journal of Materials Science,1996(4):851-860.
[10] Melanitis N.;Galiotis C.;Tetlow PL. .CHARACTERIZATION OF PAN-BASED CARBON FIBRES WITH LASER RAMAN SPECTROSCOPY .1. EFFECT OF PROCESSING VARIABLES ON RAMAN BAND PROFILES[J].Journal of Materials Science,1996(4):851-860.
[11] 涂建华,张利波,彭金辉,普靖中,张世敏.木质陶瓷的X射线衍射和喇曼光谱研究[J].无机材料学报,2006(04):986-992.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%