欢迎登录材料期刊网

材料期刊网

高级检索

利用乳液模板-静电自组装法,以甲基丙烯酰氧乙烯氯化铵(DMC)接枝改性的聚苯乙烯阳离子微球(PS+)为基体模板、石墨烯为导电介质,利用氧化石墨烯(GO)与PS+间强烈的静电相互作用直接在水中共组装,通过水合肼原位还原(in-situ reduction)成功制备了纳米石墨烯片(GNs)填充的聚苯乙烯(PS)导电复合材料。复合材料断口扫描电镜(SEM)和电性能结果表明,静电自组装有利于形成较为完善的石墨烯导电网络,GNs/PS 复合材料具有极低的导电逾渗值(0.09%(体积分数))和较高的饱和导电率(25.2S/m)。结合表面 zeta 电位、复合物微观形貌的表征,对组装机理和结构-性能关系进行了讨论。此外,热重热分析(TGA)结果表明,石墨烯的加入有效地改善了材料的热稳定性。

Electrically conductive graphene nanosheets filled polystyrene (GNs/PS)nanocomposites were fabrica-ted via electrostatic assembly integrated latex-template technology.Firstly,positive charged PS beads were synthesized with dispersed polymerization by using methacryloxyethyltrimethyl ammonium chloride as co-mon-omer,and then coassembled with graphene oxide.Eventually,GNs/PS nanocomposites with a honeycomb-like GNs framework were obtained after the follwoing in situ reduction and hot compression molding steps.Due to the well-constructed GNs network which elecrevealed by scanning electron microscope (SEM),the resulted GNs/PS nanocomposites show extremely low percolation threshold of 0.09vol% and high saturated conductivity of 25.2S/m.TGA analysis implied that the thermal stability of PS was improved by the addition of GNs.The mechanism of co-assembly and the formation of such microstructure were discussed.

参考文献

[1] Raquel Verdejo;M. Mar Bernal;Laura J. Romasanta .Graphene filled polymer nanocomposites[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2011(10):3301-3310.
[2] 黄伟九,赵远,王选伦.石墨烯/聚酰亚胺复合材料的力学和摩擦学性能[J].功能材料,2012(24):3484-3488.
[3] 王春晓,任鹏刚,刘蓬,谢利,张华,方长青.聚吡咯/石墨烯复合导电材料的制备及性能表征[J].功能材料,2012(16):2150-2152,2155.
[4] Potts, J.R.;Shankar, O.;Du, L.;Ruoff, R.S. .Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites[J].Macromolecules,2012(15):6045-6055.
[5] Chao Yan;Jeong Ho Cho;Jong-Hyun Ann .Graphene-based flexible and stretchable thin film transistors[J].Nanoscale,2012(16):4870-4882.
[6] Kai Zhang;Li Li Zhang;X. S. Zhao .Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes[J].Chemistry of Materials: A Publication of the American Chemistry Society,2010(4):1392-1401.
[7] Chun Li;Gaoquan Shi .Three-dimensional graphene architectures[J].Nanoscale,2012(18):5549-5563.
[8] Yin, S.;Niu, Z.;Chen, X. .Assembly of graphene sheets into 3D macroscopic structures[J].Small,2012(16):2458-2463.
[9] Vickery J L;Patil A J;Mann S .Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures[J].Advanced Materials,2009,21:2180-2184.
[10] Hummers Jr W S;Offeman R E .Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80:1339-1339.
[11] Park, S;An, JH;Jung, IW;Piner, RD;An, SJ;Li, XS;Velamakanni, A;Ruoff, RS .Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents[J].Nano letters,2009(4):1593-1597.
[12] Li XL;Zhang GY;Bai XD;Sun XM;Wang XR;Wang E;Dai HJ .Highly conducting graphene sheets and Langmuir-Blodgett films[J].Nature nanotechnology,2008(9):538-542.
[13] Kim, J.;Cote, L.J.;Kim, F.;Yuan, W.;Shull, K.R.;Huang, J. .Graphene oxide sheets at interfaces[J].Journal of the American Chemical Society,2010(23):8180-8186.
[14] Evgeniy Tkalya;Marcos Ghislandi;Alexander Alekseev .Latex-based concept for the preparation of graphene-based polymer nanocomposites[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2010(15):3035-3039.
[15] Mezzenga R.;Ruokolainen J.;Fredrickson GH.;Kramer EJ.;Moses D.;Heeger AJ.;Ikkala O. .Templating organic semiconductors via self-assembly of polymer colloids[J].Science,2003(5614):1872-1874.
[16] Garboczi E J;Douglas J F .Intrinsic conductivity of ob-jects having arbitrary shape and conductivity[J].Physical Review E,1996,53:6169-6180.
[17] Izabela Jurewicz;Patnarin Worajittiphon;Alice A. K. King .Locking Carbon Nanotubes in Confined Lattice Geometries - A Route to Low Percolation in Conducting Composites[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2011(20):6395-6400.
[18] Patole, A.S.;Patole, S.P.;Kang, H.;Yoo, J.-B.;Kim, T.-H.;Ahn, J.-H. .A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization[J].Journal of Colloid and Interface Science,2010(2):530-537.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%