欢迎登录材料期刊网

材料期刊网

高级检索

以Mg、烟煤和碳化无烟煤为原料,经 H 2反应球磨、热处理制备了烟煤粘结的纳米镁基储氢材料,研究了储氢材料结构及吸放氢性能,并计算了材料的吸氢动力学参数。结果表明,在600℃热处理时材料中的Mg容易与煤中的 C 发生反应生成 Mg2 C3;添加15%(质量分数)烟煤,经500℃热处理能有效粘结纳米Mg颗粒,且未见Mg2 C3生成。储氢材料的吸氢速率随温度升高而增大,在2MPa H2下吸氢量在350℃达到最大值,约3.77%(质量分数),在400℃时吸氢量略有下降。根据 Arrhenius 公式得出储氢材料在300~350℃下吸氢的一级反应表观活化能为56.6kJ/mol H 2。用TPD测定了储氢材料的放氢温度,表明材料在250℃开始放氢,388℃时达到放氢高峰。储氢材料中的C 可结合少量 H,该类 H 在加热时会以 CH4等烃的形式释放出来。

Nanostructured Mg-based hydrogen storage material with bituminous coal as binder and carbonized anthracite coal as milling aid was prepared by hydrogen reaction ball milling and heat treatment.The structure and hydrogen storage properties of the material were investigated,and the hydrogen absorption kinetics param-eter was calculated.Results show that the carbon in the material can react with Mg,and Mg2 C3 was generated when the material gets heat treated at 600℃,while at 500℃ the nano-structured Mg particles are well binded with 15wt% of bituminous coal without the generation of Mg2C3.The hydrogen absorbing rate was enhanced with the increase of temperature,and the hydrogen uptake reached to 3.77wt% at 350℃,2 MPa H2 and a little reduction at 400℃.According to Arrhenius equation,the apparent activation energy for the first order reaction of hydrogen absorbing within 300-350℃ was 56.6kJ/mol H2 .The initial and peak hydrogen desorption temper-atures are 250 and 388℃,respectively.In the hydriding process,the carbon in the material can combine a small amount of hydrogen which can be released in the form of alkane like methane and ethane.

参考文献

[1] Pellets of MgH_2-based composites as practical material for solid state hydrogen storage[J].International journal of hydrogen energy,2010(8):3565.
[2] Ranjbar A;Guo Z P;Yu X B et al.Hydrogen storage properties of MgH2-SiC composites[J].Materials Chemistry and Physics,2009,114:168-172.
[3] Seon-Ah Jin;Jae-Hyeok Shim;Young Whan Cho;Kyung-Woo Yi .Dehydrogenation and hydrogenation characteristics of MgH_2 with transition metal fluorides[J].Journal of Power Sources,2007(2):859-862.
[4] 房文斌,张文丛,于振兴,王尔德.镁基储氢材料颗粒尺寸对吸放氢动力学性能的影响[J].稀有金属材料与工程,2005(07):1017-1020.
[5] 肖学章,陈立新,刘广成,王爽,李寿权,王新华,陈长聘.球磨Mg17Al12纳米晶/非晶合金的微结构和储氢性能[J].西安交通大学学报,2007(11):1368-1372.
[6] Improvement of Mg-Al alloys for hydrogen storage applications[J].International journal of hydrogen energy,2009(4):1937-1943.
[7] 李松林,刘燚,崔建民,杨文智,李浩鹏,何轶伦.Mg2FeH6储氢材料的反应机械合金化合成及其放氢性能[J].中南大学学报(自然科学版),2008(01):1-6.
[8] 李法兵,蒋利军,詹锋,郑强,王树茂,李国斌.氢气气氛下球磨Mg-60% LaNi5合金的储氢特性研究[J].中国稀土学报,2004(06):806-809.
[9] 胡秀颖,周仕学,王振华,马怀营,雷桂芹.球磨时间对镁碳复合储氢材料结构和性能的影响[J].功能材料,2008(03):424-425,429.
[10] 周仕学,杨敏建,马怀营,张同环,张光伟.微晶碳在镁基复合储氢材料中的作用[J].山东科技大学学报(自然科学版),2009(05):54-57,80.
[11] 卢国俭,周仕学,马怀营,谭琦,ZHOU Zhuang-fei.反应球磨法制备镁/碳纳米复合储氢材料[J].功能材料,2007(07):1128-1131.
[12] 谢衍生 .金属复合储氢材料的研制[D].东南大学,2004.
[13] Shixue Zhou;Haipeng Chen;Chao Ding;Haili Niu;Tonghuan Zhang;Naifei Wang;Qianqian Zhang;Di Liu;Shuna Han;Hongguan Yu .Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium[J].Fuel,2013(Jul.):68-75.
[14] 曹鑫鑫,杨福胜,吴震,鲍泽威,张早校.机械合金化Mg2Ni储氢材料的吸氢动力学实验研究[J].西安交通大学学报,2013(05):44-50.
[15] J.F. Fernandez;C.R. Sanchez .Rate determining step in the absorption and desorption of hydrogen by magnesium[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2002(1/2):189-198.
[16] C.Z. Wu;P. Wang;X. Yao .Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2006(1/2):259-264.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%