欢迎登录材料期刊网

材料期刊网

高级检索

采用无金属催化剂的简单热蒸发法,在 Si (100)衬底上不同生长温度下成功地制备了高密度和大长径比的单晶 ZnO 纳米线。分别利用 X 射线衍射仪(XRD)、扫描电子显微镜(SEM-EDS)、透射电子显微镜(TEM)及荧光光谱仪表征样品的结构和发光性质。XRD和 TEM研究表明,所制备的样品为沿c 轴择优取向生长的单晶ZnO 纳米线,具有六方纤锌矿结构。SEM和TEM研究表明,生长温度对ZnO 纳米线的形貌及长径比的影响较大。当生长温度为700℃时,制备得到长径比为300(长度约为15μm,直径约为50nm)的 ZnO 纳米线;低于600℃时,形成花状 ZnO纳米锥或纳米棒;高于700℃时,形成小长径比的 ZnO纳米棒。此外,室温光致发光(PL)谱上出现一个强而尖锐的紫外发射峰以及一个弱而宽泛的蓝光发射峰。采用的热蒸发法制备ZnO 纳米线基于气-固(VS)生长机理且该生长方法可用于大规模、低成本制备高纯度的单晶ZnO 纳米材料。

The demonstrate that single crystal ZnO nanowires with high density and large length/diameter ratio are successfully grown on Si (100)substrates at a series of growth temperatures,via simple and catalyst-free thermal evaporation.The structural and photoluminescence properties of the resulting samples are characterized using X-ray diffraction (XRD),field-emission scanning electron microscope (FESEM),transmission electron microscope (TEM),and photoluminescence (PL),respectively.The XRD and TEM investigations indicate that the resulting ZnO nanowires are single crystalline grown along the c-axis direction in preference with the hexagonal wurtzite phase;SEM results show that the growth temperature has an effect on the morphology and the length/diameter ratio of the resulting ZnO nanowires.700℃ was believed to be the optimized growth tem-perature among the series of temperatures,and the ZnO nanowire of which possesses the largest length/diame-ter ratio estimated about 300 (15μm/50nm).Moreover,the room temperature PL measurements for the as-pre-pared ZnO nanowires exhibit two emission bands including a sharp and strong UV emission and a broad and week blue emission.The VS mechanism based deposition method in our experiment can be applied to large-scale manufacture of high-purity single crystal ZnO nanowires.

参考文献

[1] Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls[J].Advanced functional materials,2010(4):561.
[2] P. F. Carcia;R. S. McLean;M. H. Reilly;G. Nunes .Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering[J].Applied physics letters,2003(7):1117-1119.
[3] Elvira M. C. Fortunato;Pedro M. C. Barquinha;Ana C. M. B. G. Pimentel;Alexandra M. F. Goncalves;Antonio J. S. Marques;Luis M. N. Pereira;Rodrigo F. P. Martins .Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature[J].Advanced Materials,2005(5):590-594.
[4] Dengren Jin;Zhongyan Meng .Functionally graded PZT/ZnO piezoelectric composites[J].Journal of Materials Science Letters,2003(13):971-974.
[5] Schrier J;Demchenko DO;Wang LW .Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications[J].Nano letters,2007(8):2377-2382.
[6] Bachtold A;Hadley P;Nakanishi T et al.Logic circuits with carbon nanotube transistors[J].Science,2001,294(5545):1317-1320.
[7] Martinson ABF;Elam JW;Hupp JT;Pellin MJ .ZnO nanotube based dye-sensitized solar cells ZnO nanotube based dye-sensitized solar cells[J].Nano letters,2007(8):2183-2187.
[8] Won Il Park;Gyu-Chul Yi;Miyoung Kim;Stephen J. Pennycook .Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures[J].Advanced Materials,2003(6):526-529.
[9] Huang M H;Mao S;Feick H et al.Room-temperature ul-traviolet nanowire nanolasers[J].Science,2001,292(5523):1897-1899.
[10] Pan Z W;Dai Z R;Wang Z L .Nanobelts of semiconduct-ing oxides[J].Science,2001,291(5510):1947-1949.
[11] B. D. Yao;Y. F. Chan;N. Wang .Formation of ZnO nanostructures by a simple way of thermal evaporation[J].Applied physics letters,2002(4):757-759.
[12] J. Y. Lao;J. Y. Huang;D. Z. Wang;Z. F. Ren .ZnO Nanobridges and Nanonails[J].Nano letters,2003(2):235-238.
[13] Noriko Saito;Hajime Haneda;Takashi Sekiguchi;Naoki Ohashi;Isao Sakaguchi;Kunihito Koumoto .Low-Temperature Fabrication of Light-Emitting Zinc Oxide Micropatterns Using Self-Assembled Monolayers[J].Advanced Materials,2002(6):418-421.
[14] Kee C S;Ko D K;Lee J .Photonic band gaps of two-di-mensional ZnO nanorod photonic crystals[J].Journal of Physics D:Applied Physics,2005,38(21):3850-3853.
[15] Yi GC;Wang CR;Park WI .ZnO nanorods: synthesis, characterization and applications[J].Semiconductor Science and Technology,2005(4):S22-S34.
[16] Law M;Greene LE;Johnson JC;Saykally R;Yang PD .Nanowire dye-sensitized solar cells[J].Nature materials,2005(6):455-459.
[17] Park JY;Song DE;Kim SS .An approach to fabricating chemical sensors based on ZnO nanorod arrays[J].Nanotechnology,2008(10):105503-1-105503-5-0.
[18] Xu JQ.;Pan QY.;Qin JH.;Shun YA. .Sensing characteristics of double layer film of ZnO[J].Sensors and Actuators, B. Chemical,2000(1/3):161-163.
[19] Fan Z Y;Wang D W;Chang P C et al.ZnO nanowire field-effect transistor and oxygen sensing property[J].Applied Physics Letters,2004,85(24):5923-5925.
[20] W. I. Park;D. H. Kim;S.-W. Jung;Gyu-Chul Yi .Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods[J].Applied physics letters,2002(22):4232-4234.
[21] Park W I;Yi G C;Kim M Y et al.ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy[J].Advanced Materials,2003,14(24):1841-1843.
[22] Zheng MJ.;Zhang LD.;Li GH.;Shen WZ. .Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J].Chemical Physics Letters,2002(1/2):123-128.
[23] Wang JM;Gao L .Hydrothermal synthesis and photoluminescence properties of ZnO nanowires[J].Solid State Communications,2004(3/4):269-271.
[24] Liu F;Cao PJ;Zhang HR;Shen CM;Wang Z;Li JQ;Gao HJ .Well-aligned zinc oxide nanorods and nanowires prepared without catalyst[J].Journal of Crystal Growth,2005(1/2):126-131.
[25] Tz-Jun Kuo;Chun-Neng Lin;Chi-Liang Kuo .Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts[J].Chemistry of Materials: A Publication of the American Chemistry Society,2007(21):5143-5147.
[26] Seu Yi Li;Chia Ying Lee;Tseung Yuen Tseng .Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor―liquid―solid process[J].Journal of Crystal Growth,2003(3/4):357-362.
[27] Lyu SC.;Zhang Y.;Lee CJ.;Ruh H.;Lee HJ. .Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method[J].Chemistry of Materials,2003(17):3294-3299.
[28] P.Yang;C.M.Lieber .Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites[J].Journal of Materials Research,1997(11):2981-2995.
[29] Li, S;Zhang, XZ;Yan, B;Yu, T .Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method[J].Nanotechnology,2009(49):495604:1-495604:9.
[30] Zhong Lin Wang .Nanostructures of zinc oxide[J].Materials Today,2004(6):26-33.
[31] Xing YJ;Xi ZH;Zhang XD;Song JH;Wang RM;Xu J;Xue ZQ;Yu DP .Thermal evaporation synthesis of zinc oxide nanowires[J].Applied physics, A. Materials science & processing,2005(7):1527-1530.
[32] 张月,高艳阳.室温固相法合成ZnO纳米棒及其光学特性[J].功能材料与器件学报,2006(04):343-346.
[33] Dai Y.;Zhang Y.;Li QK.;Nan CW. .Synthesis and optical properties of tetrapod-like zinc oxide nanorods[J].Chemical Physics Letters,2002(1/2):83-86.
[34] B. J. Jin;S. Im;S. Y. Lee .Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2000(1/2):107-110.
[35] Bixia Lin;Zhuxi Fu;Yunbo Jia .Green luminescent center in undoped zinc oxide films deposited on silicon substrates[J].Applied physics letters,2001(7):943-945.
[36] Fu Z X;Guo C X;Lin B X et al.Cathodoluminescence of ZnO Films[J].Chinese Physics Letters,1998,15(06):457-459.
[37] Wang QP.;Zhang DH.;Xue ZY.;Hao XT. .Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2002(1/4):123-128.
[38] Srikant V.;Clarke DR. .On the optical band gap of zinc oxide[J].Journal of Applied Physics,1998(10):5447-5451.
[39] Y. C. Kong;D. P. Yu;B. Zhang;W. Fang;S. Q. Feng .Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J].Applied physics letters,2001(4):407-409.
[40] Y. Li;G. W. Meng;L. D. Zhang .Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J].Applied physics letters,2000(15):2011-2013.
[41] Dai L.;Chen XL.;Wang WJ.;Zhou T.;Hu BQ. .Growth and luminescence characterization of large-scale zinc oxide nanowires[J].Journal of Physics. Condensed Matter,2003(13):2221-2226.
[42] 马磊,李新勇,邹龙江,全燮,陈国华.晶面择优取向ZnO纳米棒阵列膜的制备及其光催化活性研究[J].功能材料,2007(04):648-651.
[43] J. B. Cui;M. A. Thomas .Power dependent photoluminescence of ZnO[J].Journal of Applied Physics,2009(3):033518-1-033518-5.
[44] Yanjun Fang;Yewu Wang;Yuting Wan .Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2010(29):12469-12476.
[45] N. Y. Garces;L. Wang;L. Bai;N. C. Giles;L. E. Halliburton;G. Cantwell .Role of copper in the green luminescence from ZnO crystals[J].Applied physics letters,2002(4):622-624.
[46] S. Mandal;A. Dhar;S. K. Ray .Growth and photoluminescence characteristics of ZnO tripods[J].Journal of Applied Physics,2009(3):033513-1-033513-6-0.
[47] Yan HL;Zhong XL;Wang JB;Huang GJ;Ding SL;Zhou GC;Zhou YC .Cathodoluminescence and room temperature ferromagnetism of Mn-doped ZnO nanorod arrays grown by chemical vapor deposition[J].Applied physics letters,2007(8):82503-1-82503-3-0.
[48] Kukovitsky E. F. .VLS-growth of carbon nanotubes from the vapor[J].Chemical Physics Letters,2000(1/2):65-70.
[49] Sekar A;Kim SH;Umar A;Hahn YB .Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders[J].Journal of Crystal Growth,2005(1/4):471-478.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%