欢迎登录材料期刊网

材料期刊网

高级检索

表面修饰是生物医学材料领域的核心技术之一,其根本目的就是要使生物材料表面具有更好的生物相容性。目前,人们已经开发出了多种生物材料表面修饰的方法。根据生物材料应用领域的不同以及面临问题的差异,其所采取的表面修饰方法也各有区别,或减少蛋白吸附和凝血,或控制细胞粘附、生长和分化,或改善材料的力学性能等。心血管生物材料领域的表面修饰技术主要针对提高材料的血液相容性和内皮细胞相容性等方面,进一步可以拓展到组织工程和再生医学方面。就心血管植入生物材料的研究现状、表面生物化修饰方法以及针对不同目的的表面改性技术进展进行了综述,以期能够为设计和开发新一代心血管植入医疗装置提供重要的参考。

Surface modification was one of the core technologies in the field of biomedical materials,its funda-mental purpose was to make the surface of the biological material has better biocompatibility.Presently,vari-ous surface modification has been developed by different groups,and different methods of surface modification was selected in terms of the application fields and the faced problems of biomaterials,including reducing protein adsorption and coagulation,controlling cell adhesion,growth and differentiation,and improving the mechanical properties.The surface modification technology of cardiovascular biomaterials mainly focus on improving the blood compatibility of the materials and the endothelial cell compatibility,and can be further expanded to tissue engineering and regenerative medicine.In this paper,the research status of cardiovascular biomaterials,the surface biomodification methods and the surface modification technology for different purposes are reviewed,in order to provide important reference for the design and development of a new generation of cardiovascular im-plantable medical devices.

参考文献

[1] Zhang Hui;Zhong Bo;Deng Yufu.Physical characteriza-tion of the surface behavior of the life cell[M].America:Science Edition,2006:216.
[2] D J LI;H Q GU .Cell attachment on diamond-like carbon coating[J].Bulletin of Materials Science,2002(1):7-13.
[3] McKenna C J;Camrud A R;Sangiorgi G et al.Fibrin-film stenting in a porcine coronary inj ury model:efficacy and safety compared with uncoated stents[J].Journal of the America College of Cardiology,1998,31(6):1434-1438.
[4] Haase J;Storger H;Hofmann M;Schwarz CE;Reinemer H;Schwarz F .Comparison of stainless steel stents coated with turbostratic carbon and uncoated stents for percutaneous coronary interventions.[J].The Journal of invasive cardiology,2003(10):562-565.
[5] Huang N;Yang P;Leng YX;Chen JY;Sun H;Wang J;Wang GJ;Ding PD;Xi TF;Leng Y .Hemocompatibility of titanium oxide films.[J].Biomaterials,2003(13):2177-2187.
[6] Peppas N A;Lnager R .New challenges in biomaterials[J].SCIENCE,1994,263:1715-1720.
[7] Tan Q;Ji J;Barbosa MA;Fonseca C;Shen J .Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant.[J].Biomaterials,2003(25):4699-4705.
[8] Chung T W;Yang M G;Liu D Z et al.Enhancing growth human endothelial cells on Arg-Gly-Asp(RGD)embedded poly(-caprolactone)(PCL)surface with nano-meter scale of surface disturbance[J].J Biomedl Mater Res A,2005,72A(2):213-219.
[9] Weatherford DA;Sackman JE;Reddick TT;Freeman MB;Stevens SL;Goldman MH .Vascular endothelial growth factor and heparin in a biologic glue promotes human aortic endothelial cell proliferation with aortic smooth muscle cell inhibition.[J].Surgery,1996(2):433-439.
[10] Chung AJ.;Rubner MF. .Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films[J].Langmuir: The ACS Journal of Surfaces and Colloids,2002(4):1176-1183.
[11] Fengming Zhang;Guicai Li;Ping Yang;Wei Qin;Chunhui Li;Nan Huang.Fabrication of biomolecule-PEG micropattern on titanium surface and its effects on platelet adhesion[J].Colloids and Surfaces, B. Biointerfaces,2013:457-465.
[12] Kishida A;Ueno Y;Fukudomef N et al.Immobiliza-tion of human thrombomodulin onto poly(ether urethane urea)for developing antithrombogenic blood-contacting materials[J].BIOMATERIALS,1994,15(10):848-852.
[13] Haeshin Lee;Shara M. Dellatore;William M. Miller;Phillip B. Messersmith .Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J].Science,2007(5849):426-430.
[14] Rubens F D .Cardiopulmonary bypass technology trans-fer:musings of a cardiac surgeon[J].Journal of Biomaterials Science-Polymer Edition,2002,13(4):485-499.
[15] Yoshioka T;Tsuru K;Hayakawa S;Osaka A .Preparation of alginic acid layers on stainless-steel substrates for biomedical applications.[J].Biomaterials,2003(17):2889-2894.
[16] Kishida A;Ueno Y;Fukudomef N et al.Immobiliza-tion of human thrombomodulin onto poly(ether urethane urea)for developing antithrombogenic blood-contacting materials[J].BIOMATERIALS,1994,15(10):848-852.
[17] Bakker W W;van der Lei B;Nieuwenhuis P et al.Re-duced thrombogenicity of artificial materials by coating with ADPase[J].BIOMATERIALS,1991,12:603-606.
[18] Nilsson PH;Engberg AE;Back J;Faxalv L;Lindahl TL;Nilsson B;Ekdahl KN .The creation of an antithrombotic surface by apyrase immobilization.[J].Biomaterials,2010(16):4484-4491.
[19] Paderi JE;Stuart K;Sturek M;Park K;Panitch A .The inhibition of platelet adhesion and activation on collagen during balloon angioplasty by collagen-binding peptidoglycans.[J].Biomaterials,2011(10):2516-2523.
[20] Nobuhiro Nagai;Ryosuke Kubota;Ryohei Okahashi .Blood Compatibility Evaluation of Elastic Gelatin Gel from Salmon Collagen[J].Journal of Bioscience and Bioengineering,2008(4):412-415.
[21] Ji J;Tan Q G;Fan D Z et al.Fabrication of alternating polycation and albumin multilayer coating onto stainless steel by electrostatic layer-by-layer adsorption[J].Colloids Surf B Biointerface,2004,34:185-193.
[22] Hubbell J A;Massia A P .Endothelial cell-selective ma-terials for tissue engineering in the vascular graft via a new receptor[J].Bio-Technology,1991,9:568-572.
[23] Tan Q G;Ji J;Barbosa M A et al.Constructing threm-boresistan suncace oil/biomedical stainless steel via lay-er-by-layer deposition anticoagulant[J].BIOMATERIALS,2003,24(25):4699-4709.
[24] Brynda E;Houska M;Jirouskova M;Dyr JE .Albumin and heparin multilayer coatings for blood-contacting medical devices.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2000(2):249-257.
[25] Serizawa T;Yamaguchi M;Akashi M .Alternating bio-activity of polymeric layer-by-layer assemblies:anticoag-ulation vs procoagulation of human blood[J].Biomacro-molecules,2002,3:723-731.
[26] Meng S;Liu Z;Shen L;Guo Z;Chou LL;Zhong W;Du Q;Ge J .The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system.[J].Biomaterials,2009(12):2276-2283.
[27] Chen J L;Li Q L;Chen J Y et al.Improving blood-compatiblity of titanium by coating collagen-heparin multilayers[J].Applied Surface Sinence,2009,25:6894-6900.
[28] Wang XH.;Li DP.;Wang WJ.;Feng QL.;Cui FZ.;Xu YX.;Song XH. .Covalent immobilization of chitosan and heparin on PLGA surface[J].International Journal of Biological Macromolecules: Structure, Function and Interactions,2003(1/3):95-100.
[29] Zhu A;Zhang M;Wu J;Shen J .Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface.[J].Biomaterials,2002(23):4657-4665.
[30] 胡珂,刘涛,刘诗卉,陈俊英,黄楠.钛材料表面固定多聚赖氨酸-肝素纳米颗粒以改善血液相容性的研究[J].功能材料,2012(19):2685-2688,2693.
[31] Chen, H.;Teramura, Y.;Iwata, H. .Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene glycol)-conjugated phospholipid[J].Journal of Controlled Release: Official Journal of the Controlled Release Society,2011(2):229-234.
[32] Li G;Yang P;Qin W;Maitz MF;Zhou S;Huang N .The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization.[J].Biomaterials,2011(21):4691-4703.
[33] Chen YM;Tanaka M;Gong JP;Yasuda K;Yamamoto S;Shimomura M;Osada Y .Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds[J].Biomaterials,2007(10):1752-1760.
[34] Lin Y S;Wang S S;Chung T W et al.Growth of en-dothelial cells on different concentrations of Gly Arg-Gly Asp photochemically grafted in polyethylene glycol mod-ified polyurethane[J].Artificial Organs,2001,25:617-621.
[35] 侯悦,林全愧,计剑,沈家骢.交联结构对肝素/壳聚糖层层组装多层膜内皮细胞相容性的影响[J].高等学校化学学报,2008(09):1890-1894.
[36] Chiu LL;Radisic M .Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues.[J].Biomaterials,2010(2):226-241.
[37] 廖玉珍,杨苹,王进,黄楠.内皮细胞在钛金属表面透明质酸微图形上的粘附行为[J].功能材料,2010(10):1807-1809.
[38] Li J A;Li G C;Zhang K.Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface[J].Applied Surface Sinence,2013
[39] Kao WJ;Lee D .In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains.[J].Biomaterials,2001(21):2901-2909.
[40] Kim SE;Song SH;Yun YP;Choi BJ;Kwon IK;Bae MS;Moon HJ;Kwon YD .The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function.[J].Biomaterials,2011(2):366-373.
[41] Guicai Li;Yuzhen Liao;Ping Yang .Tailoring of the Titanium Surface by Immobilization of Heparin/ Fibronectin Complexes for Improving Blood Compatibility and Endothelialization: An in Vitro Study[J].Biomacromolecules,2011(4):1155-1168.
[42] Kristin M. DeFife;Kathy Grako;Gina Cruz-Aranda;Sharon Price;Ron Chantung;Kassie Macpherson;Ramina Khoshabeh;Sindhu Gopalan;William G. Turnell .Poly(ester amide) Co-polymers Promote Blood and Tissue Compatibility[J].Journal of biomaterials science,2009(11):1495-1511.
[43] 薛旸,吴婕,孙皎.聚氨酯和聚四氟乙烯诱导内皮细胞炎性活化的免疫学机制[J].功能材料,2010(z1):189-192.
[44] Nilsson B;Ekdahl KN;Mollnes TE;Lambris JD .The role of complement in biomaterial-induced inflammation.[J].Molecular Immunology,2007(1/3):82-94.
[45] Engberg AE;Sandholm K;Bexborn F;Persson J;Nilsson B;Lindahl G;Ekdahl KN .Inhibition of complement activation on a model biomaterial surface by streptococcal M protein-derived peptides.[J].Biomaterials,2009(13):2653-2659.
[46] Andersson J;Larsson R;Richter R;Ekdahl KN;Nilsson B .Binding of a model regulator of complement activation (RCA) to a biomaterial surface: surface-bound factor H inhibits complement activation.[J].Biomaterials,2001(17):2435-2443.
[47] Coombes AGA;Breeze V;Lin W;Gray T;Parker KG;Parker T .Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings.[J].Biomaterials,2001(1):1-8.
[48] Chuang TW;Masters KS .Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides.[J].Biomaterials,2009(29):5341-5351.
[49] Bos GW;Scharenborg NM;Poot AA;Engbers GH;Beugeling T;van Aken-WG;Feijen J .Proliferation of endothelial cells on surface-immobilized albumin-heparin conjugate loaded with basic fibroblast growth factor.[J].Journal of biomedical materials research, Part B. Applied biomaterials,1999(3):330-340.
[50] 陈俊英 .Ti基生物材料表面促内皮/抗凝双功能修饰层的构建与化学生物学评价[J].前沿动态,2009,1:12-16.
[51] Wang, Y.;Xu, W.;Chen, Y. .Surface modification on polyurethanes by using bioactive carboxymethylated fungal glucan from Poria cocos[J].Colloids and Surfaces, B. Biointerfaces,2010(2):629-633.
[52] Wang X;Zhang X;Castellot J;Herman I;Iafrati M;Kaplan DL .Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses.[J].Biomaterials,2008(7):894-903.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%