欢迎登录材料期刊网

材料期刊网

高级检索

为了考察水分周期性作用下木材的动态吸着与干缩湿胀行为,将20 mm(T)×20 mm(R)×4 mm(L)和20 mm(T)×20 mm(R)×10 mm(L)的杨木(populus euramericana Cv)试材置于25℃,相对湿度在45%与75%之间正弦变化的环境中,分别在1、6和24 h 3个周期下测定了多个循环过程中试材含水率和弦、径向尺寸的变化情况。结果表明,试材的含水率及尺寸亦呈正弦变化趋势,但是二者在相位上均滞后于相对湿度的变化;随着周期的增加,含水率及尺寸的振幅有所增加,相位滞后有所下降,而试材厚度的增加具有相反的作用;在动态条件下,试材亦存在吸湿滞后和膨胀滞后,其水分吸着系数和湿度膨胀系数与周期正相关,与试材厚度负相关;前期研究基于针叶材提出的动态吸着模型,对于阔叶树种及不同的试材厚度,均获得了良好的模拟效果。

In order to investigate dynamic sorptive and hygroexpansive behavior of wood under cyclic relative hu-midity condition,poplar (populus euramericana Cv)specimens,in the size of 20 mm(T)×20 mm (R)×4 mm (L)and 20 mm (T)× 20 mm (R)×10 mm (L),were exposed to sinusoidally relative humidity between 45%-75% at 25 ℃ for 1,6,and 24 h.Moisture changes and radial and tangential dimensional changes measured dur-ing the cycling gave the following results.Moisture and dimensional changes of the specimens were generally si-nusoidal but lagged behind the imposed humidity.The phase lag decreased and the amplitude increased with in-creasing cyclic periods,while specimen thickness had an opposite effect on the phase lag and amplitude.Under dynamic conditions,the specimens showed sorption hysteresis and swelling hysteresis as well,and moisture sorption coefficient and humidity expansion coefficient of them were in positively correlation with cyclic period, but inversely related to specimens thickness.The dynamic sorption model proposed by a previous study based on softwood obtained good agreement with experiment results in this study for hardwood species and different specimen thickness.

参考文献

[1] 马尔妮;赵广杰.木材物理学专论[M].北京:中国林业出版社,2012:48-52.
[2] 马尔妮,赵广杰.木材的干缩湿胀--从平衡态到非平衡态[J].北京林业大学学报,2006(05):133-138.
[3] Stevens W C .The transverse shrinkage of wood[J].Forest Products Journal,1963,13(9):386-389.
[4] Farmer R H.Handbook of hardwoods(2nd edition)[M].London:Her Majesty Stationary Office,1972:243.
[5] Harris J M .The dimensional stability,shrinkage inter-section point and related properties of New Zealand tim-bers[R].Tech Paper,1 9 6 1.
[6] Wu Q;Lee JN .Thickness swelling of oriented strandboard under long-term cyclic humidity exposure condition.[J].Wood and Fiber Science,2002(1):125-139.
[7] 吴义强;彭万喜.循环解吸-吸湿处理对人工林桉木胀缩性影响的研究[J].功能材料,2007(增刊):1001-9731.
[8] Luis GARCiA ESTEBAN;Joseph GRiL;Paloma DE PALACiOS DE PALACiOS;Antonio GUiNDEO CASASU .Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles[J].Annals of Forest Science,2005(3):275-284.
[9] Fan M Z;Dinwoodie J M;Bonfield P W et al.Dimen-sional instability of cement bonded particleboard.Part 2:Behaviour and its prediction under cyclic changes in RH[J].WOOD SCIENCE AND TECHNOLOGY,2004,38(1):53-68.
[10] Schniewind A P .Creep-rupture life of douglas-fir under cyclic environmental conditions[J].WOOD SCIENCE AND TECHNOLOGY,1967,1(4):278-288.
[11] Chomcharn A;Skaar C .Dynamic sorption and hygroex-pansion of wood wafers exposed to sinusoidally varying humidity[J].WOOD SCIENCE AND TECHNOLOGY,1983,17(4):259-277.
[12] Ma Er-ni,ZHAO Guang-jie,Cao Jin-zhen.Hygroexpansion of Wood during Moisture Adsorption and Desorption Processes[J].中国林学(英文版),2005(02):43-46.
[13] Ma, Erni;Nakao, Tetsuya;Zhao, Guangjie;Ohata, Hiroshi;Kawamura, Susumu .Dynamic sorption and hygroexpansion of wood subjected to cyclic relative humidity changes.[J].Wood and Fiber Science,2010(2):229-236.
[14] Ma E N;Nakao T;Zhao G J .Responses of vertical sec-tions of wood samples to cyclical relative humidity chan-ges[J].Wood and Fiber Science,2010,42(4):550-552.
[15] Skaar C.Wood-water relations[M].Berlin:Springer-Verlag,1988
[16] Macromolecule Academy.Physical properties of macro-molecule[M].Tokyo:Kyoritsu Press,1958:250.
[17] Okoh K I A;Skaar C .Moisture sorption isotherms of the wood and inner bark of ten southern US hardwoods[J].WOOD AND FIBER,1980,12(2):98-111.
[18] Noack D;Schwab E;Bartz A .Characteristics for a j udgement of the sorption and swelling behavior of wood[J].WOOD SCIENCE AND TECHNOLOGY,1973,7:218-236.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%