欢迎登录材料期刊网

材料期刊网

高级检索

针对石墨烯薄膜在高性能微压力传感器设计中的力学行为分析,基于石墨烯薄膜中心挠度的应力-应变关系,构建石墨烯薄膜的压力敏感特性基本模型,并结合ANSYS静力学非线性分析单元,针对所述不同模型对均布压强下不同厚度的石墨烯薄膜的挠度形变特性进行了数值解析与有限元仿真。结果表明,随着均布压强增大,预应力对挠度的影响变小,且基于Beams方程模型的解析解与 ANSYS 仿真解更吻合,其相对误差约为1%,并可较好地解释不同厚度下石墨烯薄膜的压力敏感特性,为基于石墨烯薄膜的微压力传感器探头设计提供理论模型基础。

Considering the mechanical behavior analysis of graphene film for high-performance pressure sensor design,the pressure-sensitive characteristics models in graphene film were established based on the relationship between the stress and the strain at the center of graphene film.Then with regard to the above-mentioned dif-ferent theoretical models,the deflection deformation characteristics of graphene film were respectively compu-ted by numerical analysis and simulated by using nonlinear statics analysis unit with ANSYS software.The re-sults show that the effect of the prestressing force on deflection characteristics tends to be negligible as uniform-ly distributed loads increase.Moreover,the analytical solutions of Beams equations are more coincident with the ANSYS simulation results with a relative error of approximate 1%.The Beams equation-based model can also be used to preferably explain the pressure-sensitive behaviors of graphene film when the effects of graphene film thickness are taken into account,which further provides a theoretical model basis for the graphene-based micro pressure sensor probe design.

参考文献

[1] Novoselov K S;Geim A K;Morozov S V et al.Electric field effect in atomically thin carbon films[J].SCIENCE,2004,306(5696):666-669.
[2] 姜丽丽,鲁雄.石墨烯制备方法及研究进展[J].功能材料,2012(23):3185-3189,3193.
[3] Geim AK;Novoselov KS .The rise of graphene[J].Nature materials,2007(3):183-191.
[4] Heersche H B;Jarillo-Herrero P;Oostinga J B et al.Bi-polar supercurrent in graphene[J].NATURE,2007,446(7131):56-59.
[5] F.SCHEDIN;A.K.GEIM;S.V.MOROZOV .Detection of individual gas molecules adsorbed on graphene[J].Nature materials,2007(9):652-655.
[6] Bunch JS;Verbridge SS;Alden JS;van der Zande AM;Parpia JM;Craighead HG;McEuen PL .Impermeable atomic membranes from graphene sheets[J].Nano letters,2008(8):2458-2462.
[7] Koenig, S.P.;Boddeti, N.G.;Dunn, M.L.;Bunch, J.S. .Ultrastrong adhesion of graphene membranes[J].Nature nanotechnology,2011(9):543-546.
[8] Sorkin, V.;Zhang, Y.W. .Graphene-based pressure nano-sensors[J].Journal of molecular modeling,2011(11):2825-2830.
[9] Jun Ma;Wei Jin;Hoi Lut Ho;Ji Yan Dai .High-sensitivity fiber-tip pressure sensor with graphene diaphragm[J].Optics Letters,2012(13):2493-2495.
[10] Ma J;Xuan H;Ho H L et al.A fiber-optic fabry-perot acoustic sensor with multi-layer graphene diaphragm[J].Photonics Technology Letters,2013,25(10):932-935.
[11] von Karman T.Festigkeitsprobleme in maschinenbau[J].Encyklop?die der Mathematischen Wissenschaften,1910(04):311-385.
[12] Chien W Z .Large deflection of a circular clamped plate under uniform pressure[J].Acta Phys Sin,1947,7(02):102-107.
[13] Xu Zhilun.Elasticity[M].北京:高等教育出版社,2006:157-160.
[14] Beams J W.The structure and properties of thin film[M].New York:John Wiley & Sons,1959
[15] Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone .Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,2008(5887):385-388.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%