欢迎登录材料期刊网

材料期刊网

高级检索

从材料本征性能和结构的控制入手来提高其容量发挥、循环性能、倍率性能至今仍是亟待解决的一大难题,而纳米线材料因其具有独特的各向异性、大的比表面积、优异的张力适应性、快速的轴向电子传输和径向离子扩散等特性使其在锂离子电池、锂空气电池以及超级电容器储能器件的组装、原位表征等方面相较于其它简单结构纳米材料有着独特优势。结合当前纳米线材料的最新研究进展,主要讨论了单根纳米线电化学储能器件及纳米线材料的优化策略,包括新型纳米线材料的设计构筑、合成以及电化学性能表征。概括了纳米线材料的形貌控制、性能改善以及应用的前景,为其在电化学储能方面的应用奠定基础。

It was still a worldwide challenge to improve capacity,cycling stability and rate performance in con-sideration of the intrinsic properties and structure of material.Compared with other nanostructure,nanowire have demonstrated better electrochemical performance in regard of electrochemical energy storage devices such as Li-ion battery,Li-air battery and supercapacitor,since it has unique anisotropy,large specific surface area, facile strain relaxation,fast axial electron transport and radial ion diffusion.Moreover,nanowire have shown the advantages in facile assembly and in-situ characterization of electrochemical energy storage devices.Based on the latest progress in nanowire materials,we mainly summarize the design,assembly and characterization of single nanowire electrochemical energy storage device and the optimization strategy of nanowire materials.In this article,we review the strategy in improving the electrochemical performance of one-dimensional structure. This article lays a foundation for the development and applications of nanowire materials in electrochemical en-ergy storage field.

参考文献

[1] Steven Chu;Arun Majumdar .Opportunities and challenges for a sustainable energy future[J].Nature,2012(Aug.16 TN.7411):294-303.
[2] Rolison D R;Nazar L F .Electrochemical energy storage to power the 21st century[J].MRS Bulletin,2011,36:486.
[3] Peter G. Bruce;Bruno Scrosati;Jean-Marie Tarascon .Nanomaterials for Rechargeable Lithium Batteries[J].Angewandte Chemie,2008(16):2930-2946.
[4] M. Armand;J.-M. Tarascon .Building better batteries[J].Nature,2008(7179):652-657.
[5] Jun Liu .Addressing the Grand Challenges in Energy Storage[J].Advanced functional materials,2013(8):924-928.
[6] Liqiang Mai;Fan Yang;Yunlong Zhao;Xu Xu;Lin Xu;Bin Hu;Yanzhu Luo;Hangyu Liu .Molybdenum oxide nanowires: synthesis & properties[J].Materials Today,2011(7/8):346-353.
[7] Xu, L.;Jiang, Z.;Qing, Q.;Mai, L.;Zhang, Q.;Lieber, C.M. .Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes[J].Nano letters,2013(2):746-751.
[8] Liqiang Mai;Qiulong Wei;Qinyou An;Xiaocong Tian;Yunlong Zhao;Xu Xu;Lin Xu;Liang Chang;Qingjie Zhang .Nanoscroll Buffered Hybrid Nanostructural VO_2 (B) Cathodes for High-Rate and Long-Life Lithium Storage[J].Advanced Materials,2013(21):2969-2973.
[9] Ban, CM;Whittingham, MS .Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydrothermal methods[J].Solid state ionics,2008(27/32):1721-1724.
[10] Tian B;Zheng X;Kempa T J et al.Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J].NATURE,2007,449:885-889.
[11] Allon I. Hochbaum;Peidong Yang .Semiconductor Nanowires for Energy Conversion[J].Chemical Reviews,2010(1):527-546.
[12] Yan Liu;Yao Zhang;Guoheng Ma;Zan Wang;Kaiyu Liu;Hongtao Liu.Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor[J].Electrochimica Acta,2013:519-525.
[13] Riccardo Ruffo;Seung Sae Hong;Candace K. Chan .Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2009(26):11390-11398.
[14] Tang, J.;Huo, Z.;Brittman, S.;Gao, H.;Yang, P. .Solution-processed core-shell nanowires for efficient photovoltaic cells[J].Nature nanotechnology,2011(9):568-572.
[15] Wu, MC;Lee, CS .Field emission of vertically aligned V2O5 nanowires on an ITO surface prepared with gaseous transport[J].Journal of Solid State Chemistry,2009(8):2285-2289.
[16] Michael M. Thackeray;Christopher Wolverton;Eric D. Isaacs .Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J].Energy & environmental science: EES,2012(7):7854-7863.
[17] Liu, R.;Duay, J.;Lee, S.B. .Heterogeneous nanostructured electrode materials for electrochemical energy storage[J].Chemical communications,2011(5):1384-1404.
[18] Lichun Yang;Sinong Wang;Jianjiang Mao;Junwen Deng;Qingsheng Gao;Yi Tang;Oliver G. Schmidt .Hierarchical MoS_2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries[J].Advanced Materials,2013(8):1180-1184.
[19] Zhou, S.;Yang, X.;Lin, Y.;Xie, J.;Wang, D. .A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime[J].ACS nano,2012(1):919-924.
[20] Zhao J;Lu Z;Shao M.Flexible hierarchical nano-composites based on MnO2 nanowires/CoAl hydrotal-cite/carbon fibers for high performance supercapacitors[J].RSC Advances,2012(03):1045-1049.
[21] Shuijian He;Xiaowu Hu;Shuiliang Chen .Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2012(11):5114-5120.
[22] Mai, L.;Dong, Y.;Xu, L.;Han, C. .Single nanowire electrochemical devices[J].Nano letters,2010(10):4273-4278.
[23] Jian Yu Huang;Li Zhong;Chong Min Wang;John P. Sullivan;Wu Xu;Li Qiang Zhang;Scott X. Mao;Nicholas S. Hudak;Xiao Hua Liu;Arunkumar Subramanian;Hongyou Fan;Liang Qi;Akihiro Kushima;Ju Li .In Situ Observation of the Electrochemical Lithiation of a Single SnO_2 Nanowire Electrode[J].Science,2010(Dec.10 TN.6010):1515-1520.
[24] Qinyou An;Jinzhi Sheng;Xu Xu .Ultralong H2V3O8 nanowire bundles as a promising cathode for lithium batteries[J].New Journal of Chemistry,2014(5):2075-2080.
[25] Xu X;Luo Y Z;Mai L Q.Topotactically synthe-sized ultralong LiV3 O8 nanowire cathode materials for high-rate and long-life Li-ion batteries[J].NPG Asia Materials,2012(04):20.
[26] Liqiang Mai;Bin Hu;Wen Chen;Yanyuan Qi;Changshi Lao;Rusen Yang;Ying Dai;Zhong Lin Wang .Lithiated MoO_3 Nanobelts with Greatly Improved Performance for Lithium Batteries[J].Advanced Materials,2007(21):3712-3716.
[27] Ligiang Ma;Lin Xu;Bin Hu;Yanhui Gu .Improved cycling stability of nanostructured electrode materials enabled by prelithiation[J].Journal of Materials Research,2010(8):1413-1420.
[28] Garcia B;Millet M;Pereira-Ramos J P et al.Electro-chemical behaviour of chemically lithiated Lix V2 O5pha-ses(0.9≤x≤1.6)[J].Journal of Power Sources,1999,81-82:670-674.
[29] Mai L Q;Gao Y;Guan J G.Formation and lithia-tion of ferroselite nanoflowers as high-energy Li-ion bat-tery electrodes[J].International Journal of Electrochem-ical Science,2009(04):755-761.
[30] Zhang ZS;Yang J;Nuli Y;Wang BF;Xu JQ .CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells[J].Solid state ionics,2005(7/8):693-697.
[31] Mai L Q;Yang F;Zhao Y L.Hierarchical Mn-MoO4/CoMoO4 heterostructured nanowires with en-hanced supercapacitor performance[J].Nature Commu-nicaions,2011(02):381.
[32] Wu H;Xu M;Wang Y C et al.Branched Co3 O4/Fe2 O3 nanowires as high capacity lithium-ion battery an-odes[J].Nano Research,2013,6:167-173.
[33] Hwang, T.H.;Lee, Y.M.;Kong, B.-S.;Seo, J.-S.;Choi, J.W. .Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes[J].Nano letters,2012(2):802-807.
[34] Ozan Toprakci;Hatice A.K. Toprakci;Liwen Ji .Carbon Nanotube-Loaded Electrospun LiFePO4/Carbon Composite Nanofibers As Stable and Binder-Free Cathodes for Rechargeable Lithium-Ion Batteries[J].ACS applied materials & interfaces,2012(3):1273-1280.
[35] Mai, L.;Xu, X.;Han, C.;Luo, Y.;Xu, L.;Wu, Y.A.;Zhao, Y. .Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property[J].Nano letters,2011(11):4992-4996.
[36] Candace K. Chan;Riccardo Ruffo;Seung Sae Hong;Yi Cui .Surface Chemistry And Morphology Of The Solid Electrolyte Interphase On Silicon Nanowire Lithium-ion Battery Anodes[J].Journal of Power Sources,2009(2):1132-1140.
[37] Liu X H;Zhong L;Zhang L Q et al.Lithium fiber growth on the anode in a nanowire lithium ion battery during charging[J].Applied Physics Letters,2011,98:183107.
[38] Chan CK;Peng HL;Liu G;McIlwrath K;Zhang XF;Huggins RA;Cui Y .High-performance lithium battery anodes using silicon nanowires[J].Nature nanotechnology,2008(1):31-35.
[39] Nam KT;Kim DW;Yoo PJ;Chiang CY;Meethong N;Hammond PT;Chiang YM;Belcher AM .Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes[J].Science,2006(5775):885-888.
[40] Mai, L.;Xu, L.;Han, C.;Xu, X.;Luo, Y.;Zhao, S.;Zhao, Y. .Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries[J].Nano letters,2010(11):4750-4755.
[41] Hochbaum, AI;Gargas, D;Hwang, YJ;Yang, PD .Single Crystalline Mesoporous Silicon Nanowires[J].Nano letters,2009(10):3550-3554.
[42] Tong Xue;Xin Wang;Jong-Min Lee .Dual-template synthesis of Co(OH)_2 with mesoporous nanowire structure and its application in supercapacitor[J].Journal of Power Sources,2012(Mar.1):382-386.
[43] Zhang Y;Chen Y;Zhou J et al.Synthesis and high cat-alytic activity of mesoporous nanowires for carbon mon-oxide oxidation[J].Solid State communications,2009,149:585-588.
[44] Kim H;Cho J .Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material[J].Nano letters,2008(11):3688-3691.
[45] Shaju KM;Jiao F;Debart A;Bruce PG .Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries[J].Physical chemistry chemical physics: PCCP,2007(15):1837-1842.
[46] Li YG;Tan B;Wu YY .Mesoporous CO3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J].Nano letters,2008(1):265-270.
[47] Zhao, Y.;Xu, L.;Mai, L.;Han, C.;An, Q.;Xu, X.;Liu, X.;Zhang, Q. .Hierarchical mesoporous perovskite La_(0.5)Sr_(0.5)CoO _(2.91) nanowires with ultrahigh capacity for Li-air batteries[J].Proceedings of the National Academy of Sciences of the United States of America,2012(48):19569-19574.
[48] Jiang H;Yang L;Li C.High-rate electrochemical capacitors from highly graphitic carbon-tipped manga-nese oxide/mesoporous carbon/manganese oxide hybrid nanowires[J].Energy & Environmental Science,2011(04):1813-1819.
[49] Xuefeng Wang;Xiangpeng Fang;Xianwei Guo;Zhaoxiang Wang;Liquan Chen.Sulfur in hierarchically pore-structured carbon pillars as cathode material for lithium-sulfur batteries[J].Electrochimica Acta,2013:238-243.
[50] Xin Wang;Kui-Qing Peng;Ya Hu;Fu-Qiang Zhang;Bo Hu;Li Li;Meng Wang;Xiang-Min Meng;Shuit-Tong Lee .Silicon/Hematite Core/Shell Nanowire Array Decorated with Gold Nanoparticles for Unbiased Solar Water Oxidation[J].Nano letters,2014(1):18-23.
[51] 王晨,李小瑞,沈一丁,李培枝,牛育华,米小慧.离子型表面活性剂与疏水缔合聚丙烯酰胺的相互作用[J].功能材料,2012(23):3316-3321.
[52] Mai LQ;Gu YH;Han CH;Hu B;Chen W;Zhang PC;Xu L;Guo WL;Dai Y .Orientated Langmuir-Blodgett Assembly of VO2 Nanowires[J].Nano letters,2009(2):826-830.
[53] Xiaowei Yang;Chi Cheng;Yufei Wang;Ling Qiu;Dan Li .Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage[J].Science,2013(Aug.2 TN.6145):534-537.
[54] Mao, M.;Wang, M.;Hu, J.;Lei, G.;Chen, S.;Liu, H. .Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids[J].Chemical communications,2013(46):5301-5303.
[55] Min Mao;Shuzhen Chen;Ping He .Facile and economical mass production of graphene dispersions and flakes[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,2014(12):4132-4135.
[56] Huang Lei;Zhang Yanhua;Tu Mingjing .Preparation and application of lithium ion batteries grapheme-based met-al oxide anode materials[J].Journal of Functional Mate-rials,2014,45(08):08013-08019.
[57] Mengyu Yan;Fengchao Wang;Chunhua Han;Xinyu Ma;Xu Xu;Qinyou An;Lin Xu;Chaojiang Niu;Yunlong Zhao;Xiaocong Tian;Ping Hu;Hengan Wu;Liqiang Mai .Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance[J].Journal of the American Chemical Society,2013(48):18176-18182.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%