欢迎登录材料期刊网

材料期刊网

高级检索

发光玻璃在白光LED照明等技术领域有重要应用,研究发光玻璃可以有效提高 LED器件的发光效率。对复合钇铝石榴石(YAG∶Ce)荧光粉磷锌硼系(PZB)微晶玻璃的发光性能影响因素进行了分析研究。利用荧光光谱等表征手段,通过正交实验方法,讨论了基质玻璃成形方式、荧光粉掺入量和烧结气氛等对微晶玻璃发光性能的影响。研究表明,基质玻璃成形方式和荧光粉掺量对微晶玻璃的发光性能有较大影响:水淬法制备的基质玻璃的发光性能优于浇注法制备的基质玻璃;当荧光粉掺量为20%(质量分数)时,相对发光强度最大,而后又趋于下降;而烧结气氛对发光性能影响不大。采用正交实验法,得出微晶玻璃试样的相对发光强度范围为1081~4577,各因素对发光强度影响顺序为荧光粉掺量>基质玻璃成形方式>烧结温度>烧结气氛。

Luminescent glass was widely used in some high-tech fields such as white LED lighting,which can greatly improve the optical efficiency of LED devices.In this work,some factors influencing the luminescent properties of P2 O5-ZnO-B2 O3 (PZB)glass-ceramics doped with YAG∶Ce phosphor were studied and analysed. Using infrared spectra and orthogonal experimental method,the effects of shaping method,YAG∶Ce phosphor content and sintering atmosphere on the luminescent properties of PZB glass-ceramic were studied.The results shown that,shaping method and phosphor content had great effects on the luminescent properties.When the phosphor content reached up to 20wt%,PZB glass-ceramic has the highest luminous intensity,but when the content continued to rise,the emission intensity decreased.Sintering atmosphere did not make any sense to the luminescent properties.Contrary to sintering atmosphere,shaping method played an important role in the lu-minescent properties.The luminescent properties of matrix glass made by water-quenched method was better than that by pouring method.From the Orthogonal test,it can be seen that the emission intensity of the glass-ceramics ranged from 1 081-4 577 a.u.From high to low,some factors that influenced the emission intensity were YAG∶Ce phosphors content,shaping method,sintering temperature and the sintering atmosphere.

参考文献

[1] 洪广言.稀土发光材料-基础与应用[M].北京:科学出版社,2011:7-8.
[2] 张俊英,张林,陈清明,唐子龙,张中太,王天民.长余辉发光玻璃SrAl2O4∶Dy, Eu的制备与发光性能研究[J].中国稀土学报,2003(02):151-154.
[3] 林元华,陈清明,张中太,唐子龙.烧成条件对长余辉蓄光玻璃光学性能的影响[J].无机材料学报,2000(06):982-986.
[4] Fujitam S;Yoshihara S.YAG glass-ceramic phosphor for white LED(Ⅰ):background and development[A].San Diego,2005
[5] 何玲,魏小娟,李文生,董其铮,孙卫民.白光LED用白光荧光粉Gd2MoB2O9∶Eu3+,Tb3+的制备及其发光性能研究[J].功能材料,2014(03):03051-03055.
[6] 宁青菊,郭芳芳,乔畅君.白光LED用Ca2SiO3Cl2∶Tb3+单一基质荧光粉的制备及性能研究[J].功能材料,2013(14):1995-1997,2002.
[7] 贺海平,邓宏,陈金菊.白光LED封装用Ce:YAG荧光微晶玻璃的研究[J].电子元件与材料,2010(05):60-63.
[8] 黄浪欢,陈文新,刘应亮.硼铝酸锶长余辉发光玻璃的制备及发光性能研究[J].功能材料,2006(06):861-863,866.
[9] Zhou Yongqiang.Preparation and properties of rare earth silicate long afterglow luminescent materials[J].RARE METAL MATERIALS AND ENGINEERING,2010(02):45-47.
[10] Hee-Suk Roh;In-Sun Cho;Jae-Sul An .Enhanced photoluminescence property of Dy~(3+) co-doped BaAl_2O_4:Eu~(2+) green phosphors[J].CERAMICS INTERNATIONAL,2012(1):443-447.
[11] 石云,潘裕柏,冯锡淇,李江,郭景坤.Ce~(3+)掺杂YAG透明陶瓷的制备与光性能研究[J].无机材料学报,2010(02):125-128.
[12] 刘树杰,关荣锋.用于白光LED的掺杂Ce-YAG荧光玻璃的研制[J].电子元件与材料,2007(12):8-9,20.
[13] 朱学绘,范广涵,何安和,陈献文,何苗,章勇.SiO2-YAG:Ce3+玻璃荧光体的制备及其白光LED的封装[J].华南师范大学学报(自然科学版),2010(01):62-66.
[14] 朱冬梅,周万城,赵宏生,吴静波.PbBr2-PbCl2-PbF2-PbO-P2O5系统玻璃的热性质和化学稳定性[J].无机材料学报,2000(02):243-248.
[15] Liang Yang;Mingxiang Chen;Zhicheng Lv;Simin Wang;Xiaogang Liu;Sheng Liu .Preparation of a YAG:Ce phosphor glass by screen-printing technology and its application in LED packaging[J].Optics Letters,2013(13):2240-2243.
[16] 邹翔宇,张洪波,苏春辉.Sm3+:ZnO-B2O3-Al2O3-SiO2系透明玻璃陶瓷的制备和表征[J].功能材料,2013(01):47-50,55.
[17] 胡长奇,张方辉.高显色白光LED的制备与研究分析[J].功能材料,2013(03):432-434,441.
[18] Li Hong;Ye Qing;Hua Ning .Influence of fluorine on the structure and luminescence properties of Sm3+ doped strontium titanium silica glass[J].Key Engineering Ma-terials,2012,509:273-278.
[19] Li Hong;Hua Ning;Ye Qing .Microstructure and lu-minescent properties of the YAG:Ce phosphor-doped glass of the P2O5-ZnO-SiO2system[J].Key Engineer-ing Materials,2012,509:288-293.
[20] Hua Ning .Preparation and luminescent properties of phosphor-doped luminescent glass[D].Wuhan:Wuhan University of Technology,2012.
[21] 刘瑞江,张业旺,闻崇炜,汤建.正交试验设计和分析方法研究[J].实验技术与管理,2010(09):52-55.
[22] 张元,张德文,张宝昌,周迪,尹亚茹.液相法制备纳米YAG∶Ce荧光粉及其荧光性能的研究[J].化工新型材料,2013(04):117-119.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%