欢迎登录材料期刊网

材料期刊网

高级检索

利用“形变诱导相变机制”对非晶基体同时增强增韧,采用悬浮熔炼-铜模吸铸法制备了 Ti 基非晶复合材料.在此基础上,通过半固态处理工艺对凝固过程动力学控制优化组织,研究了半固态处理对试样的组织和力学行为的影响.结果表明,铸态试样组织为过冷奥氏体相、热致马氏体相和非晶复合结构,应力加载形变过程中通过形状记忆晶相 TRIP 效应对非晶基体增韧,表现为加工硬化行为.铸态试样的心部组织为较粗大的树枝晶,且生长不均匀;经半固态处理后,先析出相按照尖角溶解平面析出长大形式近球化,形成等轴晶,并在磁悬浮搅拌作用下均匀化,获得奥氏体相晶粒细小、圆整度高、组织致密,复合材料组织得到有效优化,(Ti0.5 Ni0.48 Co0.02)80 Cu20合金断裂强度和塑性变形量由2582 MPa 和15%分别提高至2745 MPa和21.5%.

Ti-based bulk amorphous composites,designed by deformation induced transformation effect to en-hance the strength and plasticity,were fabricated by suspend melting under an argon atmosphere using a copper mold.And semi-solid heat-treatment was chosen to control the solidification kinetics and optimize the micro-structure.The effect of semi-solid heat-treatment on microstructure and mechanical properties of Ti-based bulk amorphous composites were investigated.The results showed that the as-cast compounds microstructure were consist of the supercooled austenite phase,thermally-induced martensite phase and amorphous phase.As load-ing,the alloys were strengthened and toughed by TRIP effect,and exhibit a strongly work-hardening behavior. The as-cast microstructure of core region contains coarse dendrites with uneven growth.Nevertheless,the semi-solid heat-treated microstructure contains equiaxed grain with higher spheroidization,smaller and more uniform size.The spheroidal grain was formed by the sharp corner solution and plane precipitation growth mechanism. Therefore the composites microstructure was effectively optimized,as well as the comprehensive mechanical properties are further improved.After semi-solid heat-treated,fracture strength and plastic deformation of (Ti0.5Ni0.48Co0.02)80Cu20 were enhanced from 2 582 MPa and 15%,to 2 745 MPa and 21.5%.

参考文献

[1] 汪卫华.非晶态物质的本质和特性[J].物理学进展,2013(05):177-351.
[2] Das J;Tang MB;Kim KB;Theissmann R;Baier F;Wang WH;Eckert J ."Work-hardenable" ductile bulk metallic glass[J].Physical review letters,2005(20):5501-1-5501-4-0.
[3] 赵燕春,寇生中,李春燕,蒋维科,李超.Ti66.7Ni20Cu13.3非晶复合材料的组织和力学性能研究[J].功能材料,2013(01):88-91.
[4] Kirkwood D H .Semisolid metal processing[J].Inter Ma-ter Reviews,1994,39(05):173-189.
[5] Flemings M C .Behavior of metal alloys in the semisolid state[J].METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1991,22(05):957-981.
[6] Luo Shouj ing;Tian Wentong;Xie Shuisheng .Technology and applications of semi-solid forming[J].Transactions of Nonferrous Metals Society of China,2000,10(06):765-773.
[7] 张起,马勇,邓泉.水热法制备ZnO∶Sb粉体结构及光学性质[J].重庆理工大学学报:自然科学,2012(08):61-65.
[8] Otsuka K;Sawamura T;Shimizu K .Crystal structure and internal defects of equiatomic TiNi martensite[J].Physica Status Solidi(A) Applied Research,1971,5(02):457-470.
[9] Ji S. .The fragmentation of primary dendrites during shearing in semisolid processing[J].Journal of Materials Science,2003(7):1559-1564.
[10] 郑继,王新强,曾冰.非磁性元素Cu掺杂ZnO纳米层的磁性性质第一性原理计算[J].重庆理工大学学报(自然科学版),2013(11):126-129.
[11] P. Gargarella;S. Pauly;K.K. Song .Ti-Cu-Ni shape memory bulk metallic glass composites[J].Acta materialia,2013(1):151-162.
[12] Z.Y. Zhang;Y. Wu;J. Zhou .Strong work-hardening behavior in a Ti-based bulk metallic glass composite[J].Scripta materialia,2013(1):73-76.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%