欢迎登录材料期刊网

材料期刊网

高级检索

以偏钨酸铵(AMT)、可溶性钴盐、有机碳源为原材料,采用喷雾转化、直接碳化原位合成法,成功制备出 WC-Co 复合粉末。利用 XRD、SEM等分析方法对粉末样品物相组成、微观形貌、粒度分布进行了研究。研究表明,由于 Co 对 W 碳化的促进作用,在900℃时,W就被完全碳化为 WC,远低于 W 正常被碳化完全的温度;W的碳化过程主要依靠钨粉颗粒表面与含碳气氛热解后沉积在钨颗粒表面上的碳元素的反应以及碳向钨粉颗粒内部的扩散来实现,属固-固反应;由于生成 W2 C的自由能比 WC 的更低,W很快先被碳化为 W2 C,然后再进一步碳化为 WC;W/Co/C碳化反应体系沿 WCo3,Co6 W6 C,W2 C-Co,WC-Co 步骤进行反应;随着温度的升高,反应体系可不经过前两步,而直接生成 W2 C-Co,再进一步碳化为 WC-Co 复合粉。

Using ammonium metatungstate (AMT),soluble cobalt salt,and organic carbon source as the raw materials,the WC-Co composite powder was fabricated by spray conversion method and direct carbonized in-si-tu synthesize method.The phase compositions,powder morphology of WC-Co composite powder were charac-terized by XRD,SEM.Results show that W was carbonized completely at 900 ℃ because of the promoting effect of Co phase,the carbonize temperature in this experiment of W was lower than the normal carbonize tem-perature far;The carbonization process of W depends on the reaction of the surface of tungsten powder particles and carbon which resolved from carbon atmosphere,and the diffusion of carbon to the inside of W particles, was a solid-solid reaction,W was carbonized into W2 C firstly,and then carbonized into WC further because of the Gibbs free energy of W2 C is lower than WC;The W/Co/C system reacted along the specific steps of WCo3 , Co6 W6 C,W2 C-Co and WC-Co;With the increasing of carbonize temperature,the reaction system can skip the first two steps,and generated W2 C-Co directly,then carbonized into WC-Co composite powder further.

参考文献

[1] Yang Jiangao;Tan Dunqiang;Chen Hao.Cemented car-bideE[M].Changsha:Publishing House of Central South University,2012:144-156.
[2] Zhang Guozhen;Zhang Liping;Wang Che et al.Me-chanics of SPS in-situ synthesize compact WC bukl by tungsten oxide direct carbonized[J].RARE METAL MATERIALS AND ENGINEERING,2005,34(11):1743-1746.
[3] 李延俊,廖立,谢克难,孟祉含.超细WC-Co硬质合金粉末的制备及其致密化研究[J].功能材料,2013(08):1102-1105.
[4] 杨福宝,徐骏,石力开.球形微细金属粉末超声雾化技术的最新研究进展[J].稀有金属,2005(05):785-790.
[5] 赵学华,王俊文,王晓斌,赵煜.纳米WC粉体的制备及其催化应用[J].粉末冶金技术,2012(04):307-312.
[6] 徐志花,马淳安,甘永平.超细碳化钨及其复合粉末的制备[J].化学通报,2003(08):544-548,543.
[7] Xinghe Zhang;Li Liao;Yujie Wang .Synthesis of Ultrafine WC-Co Core-shell Composite Powders by Chemical Reduction Method[J].Asian Journal of Chemistry: An International Quarterly Research Journal of Chemistry,2012(1):327-329.
[8] Li Y;Xie K;Ye J.Preparation of core-shell WC-Co composite powder[J].Materials Research Innovations,2013:1-5.
[9] 史晓亮,邵刚勤,段兴龙,张卫丰,袁润章.纳米复合WC-6Co粉末的快速烧结[J].稀有金属材料与工程,2005(08):1283-1286.
[10] 韩勇,范景莲,刘涛,成会朝,田家敏.高密度纯钨的低温活化烧结工艺及其致密化行为[J].稀有金属材料与工程,2012(07):1273-1278.
[11] 吕健,羊建高,陈颢,郭圣达,戴煜,朱二涛.喷雾干燥与低温还原碳化法制备纳米晶WC-Co复合粉末[J].粉末冶金材料科学与工程,2013(06):835-839.
[12] Yang Jiangao;Lv Jian;Zhu Ertao et al.Preparation of nanophase WC-Co composite powder by continuing re-duction carbonization[J].Nonferrous Metals Science and Engineering,2013,5(04):23-27.
[13] 刘紫兰,李强,张钦钊,黄向东.机械与热综合活化法制备超细WC-Co粉末[J].中国有色金属学报,2005(06):929-934.
[14] 江国健,庄汉锐,李文兰,SHON In-Jin.场激活燃烧合成碳化钨和碳化钨钴反应机理[J].硅酸盐学报,2003(12):1155-1160,1165.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%