欢迎登录材料期刊网

材料期刊网

高级检索

从热力学角度来看,溶质在晶界偏聚,通过降低晶界能来降低晶粒长大的驱动力,从而抑制晶粒长大。从动力学角度来看,溶质与晶界交互作用,钉扎晶界,使晶界迁移速率降低,从而抑制晶粒长大。本文从热力学和动力学两方面综述了溶质对单相纳米晶材料晶粒长大行为的影响,并展望了其发展方向。

From the view of thermodynamics,grain growth was inhibited by reducing grain boundary energy and thus decreases the driving force through solute segregation.From the view of dynamic,grain growth was inhibi-ted by pinning grain boundary and thus decreases the mobility of the grain boundary through solute and grain boundary interaction.The effect of solute on grain growth behavior in single phase nanocrystalline materials by thermodynamic and kinetic approaches is reviewed in this paper,and the development direction is prospected.

参考文献

[1] Koch, CC;Scattergood, RO;Darling, KA;Semones, JE .Stabilization of nanocrystalline grain sizes by solute additions[J].Journal of Materials Science,2008(23/24):7264-7272.
[2] Koch CC .Structural nanocrystalline materials: an overview[J].Journal of Materials Science,2007(5):1403-1414.
[3] R. Klemm;E. Thiele;C. Holste .Thermal stability of grain structure and defects in submicrocrystalline and nanocrystalline nickel[J].Scripta materialia,2002(9):685-690.
[4] Vladimir Yu. Novikov .Grain growth controlled by mobile particles on grain boundaries[J].Scripta materialia,2006(3):243-246.
[5] Novikov V Y .Microstructure stabilization in bulk nano-crystalline materials:analytical approach and numerical modeling[J].Materials Letters,2008,62:3748-3750.
[6] S. Okuda;M. Kobiyama;T. Inami .THERMAL STABILITY OF NANOCRYSTALLINE GOLD AND COPPER PREPARED BY GAS DEPOSITION METHOD[J].Scripta materialia,2001(8-9):2009-2012.
[7] Protasova S;Sursaeva V .Triple junctions effect on the grain growth in nanostrucutral materials[J].Interface Sci-ence,2001,9:307-310.
[8] D. Mattissen;D.A. Molodov;L.S. Shvindlerman .Drag effect of triple junctions on grain boundary and grain growth kinetics in aluminium[J].Acta materialia,2005(7):2049-2057.
[9] Perez R J;Jiang H G;Lavernia E J .Grain size stability of nanocrystalline cryomilled Fe-3wt%Al allloy[J].Nano-Structured Materials,1997,9:71-74.
[10] Andrew J. Detor;Christopher A. Schuh .Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni-W system[J].Acta materialia,2007(12):4221-4232.
[11] Reiner Kirchheim .Grain coarsening inhibited by solute segregation[J].Acta materialia,2002(2):413-419.
[12] Feng Liu;Reiner Kirchheim .Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation[J].Journal of Crystal Growth,2004(1/3):385-391.
[13] Paul C. Millett;R. Panneer Selvam;Ashok Saxena .Stabilizing nanocrystalline materials with dopants[J].Acta materialia,2007(7):2329-2336.
[14] K.A. Darling;B.K. VanLeeuwen;C.C. Koch;R.O. Scattergood .Thermal stability of nanocrystalline Fe–Zr alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(15):3572-3580.
[15] Junjie Li;Jincheng Wang;Gencang Yang .On the stagnation of grain growth in nanocrystalline materials[J].Scripta materialia,2009(11):945-948.
[16] Fereshteh Ebrahimi;Hongqi Li .Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys[J].Scripta materialia,2006(3):263-266.
[17] H.Gleiter .Nanostructured materials: basic concepts and microstructure[J].Acta materialia,2000(1):1-29.
[18] Michels A.;Ehrhardt H.;Birringer R.;Wu DT.;Krill CE. .Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials[J].Acta materialia,1999(7):2143-2152.
[19] K. W. LIU;F. MUCKLICH .THERMAL STABILITY OF NANO-RuAl PRODUCED BY MECHANICAL ALLOYING[J].Acta materialia,2001(3):395-403.
[20] Zhu M;Wu ZF;Zeng MQ;Ouyang LZ;Gao Y .Bimodal growth of the nanophases in the dual-phase composites produced by mechanical alloying in immiscible Cu-Ag system[J].Journal of Materials Science,2008(9):3259-3266.
[21] 吴志方,吴润.纳米相复合合金中相的长大动力学[J].功能材料,2010(12):2045-2048.
[22] Rabkin E .On the grain size dependent solute and particle drag[J].Scripta Materialia,2000,42:1199-1206.
[23] Liu F;Yang GC;Wang HF;Chen Z;Zhou YH .Nano-scale grain growth kinetics[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,2006(2):212-216.
[24] Liu F;Kirchheim R .Comparison between kinetic and thermodynamic effects on grain growth[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2004(1/2):108-113.
[25] Brian K. VanLeeuwen;Kristopher A. Darling;Carl C. Koch;Ron O. Scattergood;Brady G. Butler .Thermal stability of nanocrystalline Pd_(81)Zr_(19)[J].Acta materialia,2010(12):4292-4297.
[26] Z. Chen;F. Liu;H.F. Wang .A thermokinetic description for grain growth in nanocrystalline materials[J].Acta materialia,2009(5):1466-1475.
[27] Junjie Li;Jincheng Wang;Gencang Yang .On the stagnation of grain growth in nanocrystalline materials[J].Scripta materialia,2009(11):945-948.
[28] A. J. Haslam;D. Moldovan;S. R. Phillpot;D. Wolf;H. Gleiter .Combined atomistic and mesoscale simulation of grain growth in nanocrystalline thin films[J].Computational Materials Science,2002(1/4):15-32.
[29] Haslam A J;Phillpot S R;Wolf D et al.Mechanisms of grain growth in nanocrystalline fcc metals by molecu-lar-dynamics simulation[J].Materials Science and Engi-neering A,2001,318:293-312.
[30] Moldovan D;Wolf D;Phillpot S R et al.Role of grain rotation during grain growth in a xolumnar microstruc-ture by mesoscale simulation[J].Acta Materialia,2002,50:3397-3414.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%